首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel exo-arabinase (GH93, exo-ABN) enzyme produced by the ascomycete Penicillium canescens has been studied. Cloning of the abn1 gene coding for exo-ABN into the recipient P. canescens strain RN3-11-7 yielded recombinant producing strains characterized by a high yield of extracellular exo- ABN production (20–30% of the total amount of extracellular protein). Chromatographic purification yielded a homogenous exo-ABN with a molecular weight of 47 kDa, as shown by SDS-PAGE. The enzyme showed high specific activity towards linear arabinan (117 U/mg) and low specific activity towards branched arabinan and arabinoxylan (4–5 U/mg) and para-nitrophenyl-α-L-arabinofuranoside (0.3 U/mg), whereas arabinogalactan and para-nitrophenyl-α-L-arabinopyranoside, the substrates that contained the pyranose form of arabinose, were not hydrolyzed. Arabinohexaose was the major product of linear arabinan hydrolysis. Exo-ABN had a pH optimum at 5.0 and a temperature optimum at 60°C. The enzyme was stable in a broad pH range (4.0–7.0) and upon heating to 50°C during 180 min. Extensive hydrolysis of linear and branched arabinans by exo- and endo-arabinase mixtures, arabinofuranosidase, and arabinofuran-arabinoxylan hydrolase has been performed. The degree of substrate conversion amounted to 67 and 83% of the maximal possible value, respectively.  相似文献   

2.
A xylanase-producing, Gram-positive, aerobic, and spore-forming bacterium was isolated from a soil sample collected from Jeju Island and was classified as a novel subspecies of Streptomyces thermocarboxydus on the basis of 16S rRNA gene sequence similarity, the results of DNA–DNA hybridization analysis, and phenotypic characteristics. The novel strain was named as S. thermocarboxydus subsp. MW8 (=KCTC29013 = DSM52054). This strain produced extracellular xylanase. Xylanase from the strain was purified to homogeneity and had an apparent molecular weight of 52 kDa. The NH2-terminal sequence (Ala-Glu-Ile-Arg-Leu) was distinct from those of previously reported xylanases. The purified xylanase produced xylobiose as the end-product of birchwood xylan hydrolysis. The Km and Vmax values of the purified xylanase on birchwood xylan were 1.71 mg/ml and 357.14 U/mg, respectively. The optimum pH and temperature for the enzyme were found to be 7.0 and 50 °C, respectively, and the enzyme exhibited significant heat stability. In addition, the enzyme was active over broad pH ranges: 84% of the maximum activity at pH 5.0, 84–88% at pH 6.0, 88% at pH 8.0, and 75–81% (pH 9.0). These enzymatic properties may be very useful for use in bio-industrial applications.  相似文献   

3.
The general properties and specificity of a dextran α-(1→2)-debranching enzyme from Flavobacterium have been examined in order to apply this enzyme to the structural analysis of highly branched dextrans. The optimum pH range and temperature were pH 5.5–6.5, and 45°, respectively. The enzyme was stable up to 40° on heating for 10 min, and over a pH range of 6.5–9.0 on incubation at 4° for 24 h. The effects of various metal ions and chemical reagents have also been examined. The debranching enzyme has a strict specificity for the (1→2)-α-d-glucosidic linkage at branch points of dextrans and related branched oligosaccharides, and produces d-glucose as the only reducing sugar. The degree of hydrolysis of the dextrans by this enzyme and the Km value (mg/mL) were as follows: B-1298 soluble, 25.2%, 0.21; B-1299 soluble, 31.5%, 0.27; and B-1397, 11.8%, 0.91. The debranching enzyme thus has a novel type of specificity as a dextranhydrolase. We have termed this enzyme as dextran α-(1→2)-debranching enzyme, and its systematic name is also discussed.  相似文献   

4.
An endo-xylanase (1,4-β-d-xylanxylanohydrolase EC 3.2.1.8) was isolated from the culture filtrate of Paecilomyces varioti Bainier. The enzyme was purified 3.2 fold with a 60% yield by gel filtration and ion exchange chromatography. The purified enzyme had a molecular weight of 25,000 with a sedimentation coefficient of 2.2 S. The isoelectric point of the enzyme was 3.9. The enzyme was obtained in crystalline form. The optimum pH range was 5.5–7.0 and the temperature, 65°C. The Michaelis constant was 2.5 mg larchwood xylan/ml. The enzyme was found to degrade xylan by an endo mechanism producing arabinose, xylobiose, xylo- and arabinosylxylo-oligosaccharides, during the initial stages of hydrolysis. On prolonged incubation, xylotriose, arabinosylxylotriose and xylobiose were the major products with traces of xylotetraose, xylose and arabinose.  相似文献   

5.
Lipase B from Candida antarctica (CALB) has been adsorbed on octyl-agarose or covalently immobilized on cyanogen bromide agarose. Then, both biocatalysts have been modified with ethylenediamine (EDA) or 2,4,6-trinitrobenzensulfonic acid (TNBS) just using one reactive or using several modifications in a sequential way (the most complex preparation was CALB–TNBS–EDA–TNBS). Covalently immobilized enzyme decreased the activity by 40–60% after chemical modifications, while the adsorbed enzyme improved the activity on p-nitrophenylbutyrate (pNPB) by EDA modification (even by a 2-fold factor). These biocatalysts were further characterized. The results showed that the effects of the chemical modification on the enzyme features were strongly dependent on the immobilization protocol utilized, the experimental conditions where the catalyst will be utilized, and the substrate. Significant changes in the activity/pH profile were observed after the chemical modifications. The effect of the modifications on the enzyme activity depends on the substrate and the reaction conditions: enzyme specificity is strongly altered by the chemical modification. Moreover, enzyme activity versus pNPB (using octyl-CALB–EDA) or versus R methyl mandelate (using octyl-CALB–TNBS) increased by almost a 2-fold factor at pH 5. The stability of the modified enzymes at different pH and in the presence of organic solvents generally decreased after the modifications, usually by no more than a 2-fold factor. However, under some conditions, some stabilization was found. CALB enantioselectivity in the hydrolysis of R/S methyl mandelate could be also improved by these chemical modifications (e.g., E-value went from 11 to 16 using octyl-CALB–TNBS at pH 5). Therefore, solid phase chemical modification of immobilized lipases may become a powerful tool in the design of lipase libraries with very different properties, each immobilized preparation may be used to produce a variety of forms with altered properties.  相似文献   

6.
Lipases are water-soluble enzymes that catalyze the hydrolysis of triacylglycerols (in aqueous media) or trans-esterification reactions (in microaqueous media) and are involved in a number of industrial applications. As a limit to lipase application is represented by the need for interfacial activation, the search for suitable solid supports able to fulfill this requirement is always ongoing. In the present work, we report the preliminary characterization of a system obtained by adsorbing Pseudomonas fluorescens lipase on a newly synthesized cyclodextrin-based carbonate nanosponge (CD–NS–1:4). The activity and structural stability of lipase adsorbed on this new support were evaluated by checking the effect of temperature, pH changes and organic solvents (methanol) on the enzyme structure and function, which were compared with those of the free enzyme in solution. Our data show that the non-covalent interaction of Ps. fluorescens lipase with CD–NS–1:4 results in enzyme structural and functional stabilization, as it was still active after 66 days of incubation at T  18 °C. Stabilization with respect to T, pH and the presence of organic solvent was observed as well as, unlike the solubilized enzyme, the adsorbed lipase was active at T > 40 °C, at pH 5 and after 24-h incubation with 70% (v/v) methanol (13% residual activity).  相似文献   

7.
An extracellular glucoamylase [exo-1,4-α-d-glucosidase, 1,4-α-d-glucan glucohydrolase, EC 3.2.1.3] of Endomycopsis fibuligera has been purified and some of its properties studied. It had a very high debranching activity (0.63). The enzyme was completely adsorbed onto raw starch at all the pH values tested (pH 2.0–7.6). Amylase inhibitor from Streptomyces sp. did not prevent the adsorption of glucoamylase onto raw starch although the enzyme did not digest raw starch in the presence of amylase inhibitor. Sodium borate (0.1 m) eluted only 35% of the adsorbed enzyme from raw starch. The optimum pH for raw starch digestion was 4.5 whereas that of boiled soluble starch hydrolysis was 5.5. Waxy starches were more easily digested than non-waxy starches, and root starches were slowly digested by this enzyme.  相似文献   

8.

The enzymatic hydrolysis was performed by Alcalase to recover the fish protein hydrolysate from Caspian kutum by-product (CB). The degree of hydrolysis (DH) was applied for monitoring the hydrolysis reaction of CB. The response surface methodology was applied based on a D-optimal design to perform the optimization process for obtaining the high yield of CB protein hydrolysate. The effect of four independent variables including pH (7.5–8.5), temperature (45–55 °C), time (1–3 h), and enzyme concentration (0.5–1.5% w/w) on DH was studied. The results indicated that the predicted and actual values of the optimum condition had no significant difference. The optimum enzymatic hydrolysis conditions were achieved at pH 8.5, temperature of 55 °C, enzyme concentration of 1.5% w/w, and time of 3 h, which resulted in the maximum value of DH (19.08%). Antioxidant assays including DPPH scavenging and metal chelating activities showed that Caspian kutum protein hydrolysates had antioxidant properties.

  相似文献   

9.
The technique based on sol–gel approach was used to generate silica matrices derivatives by hydrolysis of silane compounds. The present work evaluates a hybrid matrix obtained with tetraethoxysilane (TEOS) and polyvinyl alcohol (PVA) on the immobilization yield of lipase from Pseudomonas fluorescens. The resulting polysiloxane–polyvinyl alcohol (POS–PVA) matrix combines the property of PVA as a suitable polymer to retain proteins with an excellent optical, thermal and chemical stability of the host silicon oxide matrix. Aiming to render adequate functional groups to the covalent binding with the enzyme the POS–PVA matrix was chemically modified using epichlorohydrin. The results were compared with immobilized derivative on POS–PVA activated with glutaraldehyde. Immobilization yield based on the recovered lipase activity depended on the activating agent and the highest efficiency (32%) was attained when lipase was immobilized on POS–PVA activated with epichlorohydrin, which, probably, provided more linkage points for the covalent bind of the enzyme on the support. This was confirmed by determining the morphological properties using different techniques as X-ray diffraction and scanning electron microscopy (SEM). Comparative studies were carried out to attain optimal activities for free lipase and immobilized systems. For this purpose, a central composite experimental design with different combinations of pH and temperature was performed. Enzymatic hydrolysis with the immobilized enzyme in the framework of the Michaelis–Menten mechanism was also reported. Under optimum conditions, the immobilized derivative on POS–PVA activated with epichlorohydrin showed to have more affinity for the substrate in the hydrolysis of olive oil, with a Michaelis–Menten constant value (Km) of 293 mM, compared to the value of 401 mM obtained for the immobilized lipase on support activated with glutaraldehyde. Data generated by DSC showed that both immobilized derivatives have similar thermal stabilities.  相似文献   

10.
Isolates from gardening waste compost and 38 culture collection microbes were grown on agar plates at pH 4.0 with the cutinase model substrate polycaprolactone as a carbon source. The strains showing polycaprolactone hydrolysis were cultivated in liquid at acidic pH and the cultivations were monitored by assaying the p-nitrophenyl butyrate esterase activities. Culture supernatants of four strains were analyzed for the hydrolysis of tritiated apple cutin at different pHs. Highest amounts of radioactive hydrolysis products were detected at pHs below 5. The hydrolysis of apple cutin by the culture supernatants at acidic pH was further confirmed by GC–MS analysis of the hydrolysis products. On the basis of screening, the acidic cutinase from Aspergillus niger CBS 513.88 was chosen for heterogeneous production in Pichia pastoris and for analysis of the effects of pH on activity and stability. The recombinant enzyme showed activity over a broad range of pHs with maximal activity between pH 5.0 and 6.5. Activity could be detected still at pH 3.5.  相似文献   

11.
A new strain Penicillium sp. IB-37-2, which actively hydrolyzes chitosan (SD ~80–85%) but possesses low activity against colloidal chitin, was isolated. The fungus was observed to have a high level chitosanase biosynthesis (1.5–3.0 U/mL) during submerged cultivation at 28°C, with a pH of 3.5–7.0 and 220 rpm in nutrient media containing chitosan or chitin from shells of crabs. Purification of the chitosanase enzyme complex from Penicillium sp. IB-37-2 by ultrafiltration and hydrophobic chromatography, followed by denaturing electrophoresis, revealed two predominant proteins with molecular weights of 89 and 41 kDa. The purified enzyme complex demonstrated maximal activity (maximal rate of hydrolysis of dissolved chitosan) and stability at 50–55°C and a pH of 3.5–4.0. The enzyme preparation also hydrolyzed laminarin, β-(1,3)-(1,4)-glycan, and colloidal chitin. Exohydrolysis of chitosan by the preparation isolated from Penicillium sp. IB-37-2 resulted in the formation of single product, D-glucosamine.  相似文献   

12.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   

13.
A xylanase gene was isolated from the genomic DNA of Streptomyces coelicolor Ac-738. The 723-bp full-length gene encoded a 241-amino acid peptide consisting of a 49-residue putative TAT signal peptide and a glycoside hydrolase family-11 domain. The mature enzyme called XSC738 was expressed in Escherichia coli M15[pREP4]. The electrophoretically homogeneous protein with a specific activity of 167 U/mg for beechwood xylan was purified. The pH optimum of XSC738 was at pH 6; a high activity was retained within a pH range of 4.5–8.5. The enzyme was thermostable at 50–60 °C and retained an activity at pH 3.0–7.0. Xylanase XSC738 was activated by Mn2+, Co2+ and largely inhibited by Cd2+, SDS and EDTA. The products of xylan hydrolysis were mainly xylobiose, xylotriose, xylopentaose and xylohexose. Xylotetraose appeared as a minor product. Processing of such agricultural xylan-containing products as wheat, oats, soy flour and wheat bran by xylanase resulted in an increased content of sugars.  相似文献   

14.
《Process Biochemistry》2010,45(10):1730-1737
An aerobic xylanolytic Gracilibacillus sp. TSCPVG growing at moderate to extreme salinity (1–30%) and neutral to alkaline pH (6.5–10.5) was isolated from the salt fields near Sambhar district of Rajasthan, India. β-xylanase (18.44 U/ml) and β-xylosidase (1.01 U/ml) were produced in 60 h in the GSL-2 mineral base medium with additions of (in g/l) Birchwood xylan (7.5), yeast extract (10.0), tryptone (8.0), proline (2.0), thiamine (2.0), Tween-40 (2.0) and NaCl (35) at pH 7.5, 30 °C and 180 rpm. The β-xylanase was active within a broad salinity range (0–30% NaCl), pH (5.0–10.5) and temperature (50–70 °C). It exhibited maximal activity with 3.5% NaCl, pH 7.5 at 60 °C. It was extremely halotolerant retaining more than 80% of activity at 0 and 30% NaCl and alkali-tolerant retaining 76% of activity at pH 10.5. The acetone precipitated xylanase was highly stable (100%) at variable salinities of 0–30% NaCl, pH of 5.0–10.5 and temperatures of 0–60 °C for 48 h. HPLC analysis showed xylose, arabinose and xylooligosaccharides as hydrolysis products of xylan. This is the first report on hemi-cellulose degrading halo-alkali-thermotolerant enzyme from a moderately halophilic Gram-positive Gracilibacillus species.  相似文献   

15.
In this study, response surface methodology was applied to optimize process variables like temperature, pH, enzyme concentration (mg/g oil), and buffer concentration (g/g oil) for hydrolysis of castor oil using Candida rugosa lipase. A 24 full factorial central composite design was used to develop the quadratic model that was subsequently optimized and the optimal conditions were as follows: temperature 40 °C, pH 7.72, enzyme concentration 5.28 mg/g oil, buffer concentration 1 g/g oil and there was 65.5% conversion in 6 h. These predicted optimal conditions agreed well with the experimental results. This is the first report on the application of response surface methodology in castor oil hydrolysis using C. rugosa lipase with higher percentage conversion in 6 h.  相似文献   

16.
Studies were made of invertase adsorption on Amberlite ion exchange resins. Up to 4000 units of adsorbed enzymatic activity (aea) were obtainedper g of IRA 93 resin; for an aea of 1600 units, the maximum ratio of aea over units of soluble enzyme used for adsorption was close to 50%. Nodesorption occurred during extensive washing at 30°C with 0.01M sodiumacetate buffer at pH 5. Progressive desorption of aea from the invertase–IRA 93 complex occurred when buffer molarity and temperature were increased. Desorption differed only slightly when the buffer pH was 3 or 5. Theoptimum pH of aea was 3.2 with IRA 93 resin, and varied between 3.2 and 5.1with other resins, depending on their anionic or cationic nature. Batch hydrolysis of sucrose by IRA 93–adsorbed invertase followed 1st order kinetics with respect to the substrate concentration, as in the case of soluble invertase. Continuous sucrose hydrolysis with IRA 93–adsorbed invertase was performed in a tubular reactor, and the percent conversion was experimentally determined as a function of the flow rate. The reaction was experimentally determined 50% (w/v) sucrose solution, at pH4 and 30°C; at the selected flow rate, the ratio of sucrose hydrolysis remained constant and close to 76%. This shows that invertase was not desorbed from the tubular reactor. Some continuous hydrolyses were performed with an industrial sucrose solution: enzymatic activity seemed to be stable for anextended period for time (1 month) at 30°C and pH 3 or 4.  相似文献   

17.
The products of hydrolytic action of 18 enzyme preparations at pH 3·5 and 5·5 on pectate were analyzed by gel-filtration chromatography early in the course of reaction (8–15% hydrolysis), and at a time 10 times that required for 10% hydrolysis. The degree of hydrolysis at the latter time varied from 25 to 74%. Three patterns of oligosaccharide production could be distinguished: endo-hydrolysis, exo-hydrolysis, and that due to S-polygalacturonase. The initial products of endo-hydrolysis were mixed oligosaccharides 5–30 units long; monomer and dimer appeared early but represented less than 2% of the products until late in the reaction. exo-Polygalacturonase (not entirely free of endo-) showed predominant production of the monomer and was clearly evident when mixed with four parts of endo-polygalacturonase. The time course of reducing group production by highly purified S-polygalacturonase could be reproduced by the above mixture of exo- and endo-polygalacturonases, but the pattern of products and the pH relations could not. The initial products of S-polygalacturonase were monomer, dimer and pentamer with lesser amounts of trimer and tetramer. After the hydolysis of the polymer and large oligomers, the pentamer was attacked by S-polygalacturonase, in the same way that the accumulated hexamer, etc. were finally hydrolysed by the endo-polygalacturonase.  相似文献   

18.
《Plant science》1988,55(3):205-211
Potato (Solanum tuberosum L.) leaves were shown to contain a lipolytic enzyme activity which is stimulated by treatment with purified trypsin, pronase, and to a lesser degree by chymotrypsin. This protease-stimulated activity was stable over a wide range of pH values. Lipolytic enzyme activity also appeared to be regulated by pH, with a pronounced stimulation at pH 6.0 ± 0.5 and a subsequent inactivation at pH 8.0–9.0. This pH stimulation was slightly by ethylene diamine tetracetic acid (EDTA), and was inhibited by Ca2+. Although leupeptin slightly inhibited the pH stimulation, two other protease inhibitors, phenylmethylsulfonyl fluoride (PMSF) and soybean trypsin inhibitor showed no effect. While some of the lipolytic enzyme activitiesn potato leaves (those detected by 1-acyl-2-[6-[(7-nitro-2,1,3 benzoxadiazol-4-yl) amino]-caproyl] phosphatidylcholine (C6-NBD-PC) hydrolysis) are stimulated by protease or pH treatment, others (those detected by 4-methylumbelliferyl laurate (4MUL) hydrolysis) are inactivated by them. The possible physiological significance of this apparent proteolytic activation is discussed.  相似文献   

19.
In this work, an active phytase concentrated extract from soybean sprout was immobilized on a polymethacrylate-based polymer Sepabead EC-EP which is activated with epoxy groups. The immobilized enzyme exhibited an activity of 0.1 U/g of carrier and activity yield of 64.7%. The optimum temperature and pH for the activity of both free and immobilized enzymes were found as 60 °C and pH 5.0, respectively. The immobilized enzyme was more stable than free enzyme in the range of pH 3.0–8.0 and more than 70% of the original activity was recovered. Both the enzymes completely retained nearly about 84% of their original activity at 65 °C. The Km and Vmax values were measured as 5 mM and 0.63 U/mg for free enzyme and 12.5 mM and 0.71 U/mg for immobilized enzyme, respectively. Free and immobilized soybean sprout phytase enzymes were also used in the biodegradation of soymilk phytate. The immobilized enzyme hydrolysed 92.5% of soymilk phytate in 7 h at 60 °C, as compared with 98% hydrolysis observed for the native enzyme over the same period of time. The immobilization procedure on Sepabead EC-EP is very cheap and also easy to carry out, and the features of the immobilized enzyme are very attractive that the potential for practical application is considerable.  相似文献   

20.
An isoenzyme of human liver acid phosphatase (orthophosphoric monoester phosphohydrolase (acid optimum), EC 3.1.3.2) has been purified 4560-fold to homogeneity. The purification procedure includes ammonium sulfate fractionation, acid treatment, ion exchange chromatography on O-(carboxymethyl)-cellulose and DEAE-cellulose, Sephacryl S-200 chromatography, and affinity chromatography on Concanavalin A-Sepharose 4B. The homogeneous enzyme is a glycoprotein having 4% carbohydrate by weight in the form of mannose and glucosamine. In polyacrylamide gel electrophoresis under varied conditions of pH and cross-linking, the purified enzyme displays a single protein band coincident with activity. The native enzyme has a molecular weight of 93,000 as determined by gel elution chromatography and consists of two equivalent polypeptide chains. The subunit weight is 50,000–52,000 by sodium dodecyl sulfate gel electrophoresis. l-(+)-Tartrate is a strong competitive inhibitor of the enzyme; Ki is 4.3 × 10?7m at pH 4.8 in 50 mm sodium acetate/100 mm sodium chloride. Ki values for a number of other inhibitors are given. Although it catalyzes the hydrolysis of a variety of phosphomonoesters, this isoenzyme of human liver acid phosphatase does not hydrolyze adenosine 5′-diphosphate, adenosine 5′-triphosphate, pyrophosphate, or choline phosphate at a detectable rate. The values of V differ with different alcohol or phenol leaving groups. The pH dependence of Km and V values for the hydrolysis of p-nitrophenyl phosphate have been determined together with the pH dependence of Ki for l-(+)-tartrate. The pH dependence of both Km and V indicate the effect of substrate ionization (pK ~ 5.2) and the involvement of a group in the EScomplex having a pKa value of approximately 6–7 which is ascribed either to a phosphoryl-enzyme intermediate or to the ionization of substrate in the ES-complex. An irreversible modification of the enzyme and a rapid loss of enzymic activity occurs upon treatment of the enzyme with Woodward's reagent K. The enzyme is protected against inactivation by the presence of competitive inhibitors. These and other data suggest that at least one carboxylic acid group plays an important role in catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号