首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary This report details preliminary findings for ion channels in the plasma membrane of protoplasts derived from the cotyledons ofAmaranthus seedlings. The conductance properties of the membrane can be described almost entirely by the behavior of two types of ion channel observed as single channels in attached and detached patches. The first is a cation-selective outward rectifier, and the second a multistate anion-selective channel which, under physiological conditions, acts as an inward rectifier.The cation channel has unit conductance of approx. 30 pS (symmetrical 100 K+) and relative permeability sequence K+>Na+>Cl (10.160.03); whole-cell currents activate in a time-dependent manner, and both activation and deactivation kinetics are voltage dependent. The anion channel opens for hyperpolarized membrane potentials, has a full-level conductance of approx. 200 pS and multiple subconductance states. The number of sub-conductances does not appear to be fixed. When activated the channel is open for long periods, though shuts if the membrane potential (V m ) is depolarized; at millimolar levels of [Ca2+]cyt this voltage dependency disappears. Inward current attributable to the anion channel is not observed in whole-cell recordings when MgATP (2mm) is present in the intracellular solution. By contrast the channel is active in most detached patches, whether MgATP is present or not on the cytoplasmic face of the membrane. The anion channel has a significant permeability to cations, the sequence being NO 3 >Cl>K+>Aspartate (2.0410.18 to 0.090.04). The relative permeability for K+ decreased at progressively lower conductance states. In the absence of permeant anions this channel could be mistaken for a cation inward rectifier. The anion and cation channels could serve to clampV m at a preferred value in the face of events which would otherwise perturbV m .  相似文献   

2.
With the use of the patch-clamp technique, highly selective nonvoltage-gated sodium channels were found in the membrane of rat peritoneal macrophages. The inward single channel currents were measured in cell-attached and outside-out mode experiments at different holding membrane potentials within the range of-60 to +40 mV. The channels had a unitary conductance of 10.2 ± 0.2 pS with 145 mm Na+ in the external solution at 23–24°C. The results of ion-substitution experiments confirmed that this novel type of cation channel in macrophages is characterized by high selectivity for Na+ over K+ (as for Cs+, NH4 +, Ca2+, Ba2+) ions, whose conduction through these sodium-permeable channels was not measurable. Lithium is the only other ion that is transported by this pathway; the unitary conductance was equal to 3.9 ± 0.2 pS in the Li+-containing external solution. Single channel currents and conductance were found to be linearly dependent on the external sodium concentration. Sodium channels in macrophage membrane patches were not blocked by tetrodotoxin (0.01–1 m). Single sodium currents were reversibly inhibited by the external application of amiloride (0.1–2 mm) and its derivative ethylisopropilamiloride (0.01–0.1 Mm). The mechanism of channel block by amiloride and its analogue seems to be different.We thank Dr. G.N. Mozhayeva and Dr. A.P. Naumov for useful discussions. This work has been supported by a grant from the Russian Basic Research Foundation, 93-04-21722.  相似文献   

3.
Z. Ping  I. Yabe  S. Muto 《Protoplasma》1992,171(1-2):7-18
Summary K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cell suspension cultures have been investigated using the patch-clamp technique. In symmetrical 100mM K+, K+ channels opened at positive vacuolar membrane potentials (cytoplasmic side as reference) had different conductances of 57 pS and 24 pS. K+ channel opened at negative vacuolar membrane potentials had a conductance of 43 pS. The K+ channels showed a significant discrimination against Na+ and Cl. The Cl channel opened at positive vacuolar membrane potentials for cytoplasmic Cl influx had a high conductance of 110pS in symmetrical 100mM Cl. When K+ and Cl channels were excluded from opening, no traces were found of Ca2+ channel activity for vacuolar Ca2+ release induced by inositol 1,4,5-trisphosphate or other events. However, we found a 19pS Ca2+ channel which allowed influx of cytoplasmic Ca2+ into the vacuole when the Ca2+ concentration on the cytoplasmic side was high. When Ca2+ was substituted by Ba2+, the conductance of the 19 pS channel became 30 pS and the channel showed a selectivity sequence of Ba2+Sr2+Ca2+Mg2+=10.60.60.21. The reversal potentials of the channel shifted with the change in Ca2+ concentration on the vacuolar side. The channel could be efficiently blocked from the cytoplasmic side by Cd2+, but was insensitive to La3+, Gd3+, Ni2+, verapamil, and nifedipine. The related ion channels in freshly isolated vacuoles from red beet root cells were also recorded. The coexistence of the K+, Cl, and Ca2+ channels in the vacuolar membrane of tobacco cells might imply a precise classification and cooperation of the channels in the physiological process of plant cells.  相似文献   

4.
The properties of one ATP-inhibited and one Ca2+-dependent K+ channel were investigated by the patch-clamp technique in the soma membrane of leech Retzius neurons in primary culture. Both channels rectify at negative potentials. The ATP-inhibited K+ channel with a mean conductance of 112 pS is reversibly blocked by ATP (K i = 100 m), TEA (K i =0.8 mm) and 10 mm Ba2+ and irreversibly blocked by 10 nm glibenclamide and 10 m tolbutamide. It is Ca2+ and voltage independent. Its open state probability (P o) decreases significantly when the pH at the cytoplasmic face of inside-out patches is altered from physiological to acid pH values. The Ca2+-dependent K+ channel with a mean conductance of 114 pS shows a bell-shaped Ca2+ dependence of P o with a maximum at pCa 7–8 at the cytoplasmic face of the membrane. The P o is voltage independent at the physiologically relevant V range. Ba2+ (10 mm) reduces the single channel amplitude by around 25% (ATP, TEA, glibenclamide, tolbutamide, and Ba2+ were applied to the cytoplasmic face of the membrane).We conclude that the ATP-dependent K+ channel may play a role in maintaining the membrane potential constant—independently from the energy state of the cell. The Ca2+-dependent K+ channel may play a role in generating the resting membrane potential of leech Retzius neurons as it shows maximum activity at the physiological intracellular Ca2+ concentration.This study was supported by the Deutsche Forschungsgemeinschaft (W.-R. Schlue) and by a fellowship of the Konrad-Adenauer-Stiftung (G. Frey). We thank Dr. Draeger (Hoechst AG) for the gift of glibenclamide. The data are part of a future Ph.D. thesis of G. Frey.  相似文献   

5.
Summary Four types of nonvoltage-activated potassium channels in the body-wall muscles ofDrosophila third instar larvae have been identified by the patch-clamp technique. Using the inside-out configuration, tetraethylammonium (TEA). Ba2+, and quinidine were applied to the cytoplasmic face of muscle membranes during steady-state channel activation. The four channels could be readily distinguished on the basis of their pharmacological sensitivities and physiological properties. The KST channel was the only type that was activated by stretch. It had a high unitary conductance (100 pS in symmetrical 130/130mm KCl solution), was blocked by TEA (K d 35mm), and was the most sensitive to Ba2+ (complete block at 10–4 m). A Ca2+-activated potassium channel. KCF 72pS (130/130mm KCl), was gated open at>10–8 m Ca2+, was the least sensitive to Ba2+ (K d of 3mm) and TEA (K d of 100mm), and was not affected by quinidine. K2 was a small conductance channel of 11 pS (130/2 KCl, pipette/bath), and was very sensitive to quinidine, being substantially blocked at 0.1mm. It also exhibited a half block at 0.3mm Ba2+ and 25mm TEA. A fourth channel type, K3, was the most sensitive to TEA (half block<1mm). It displayed a partial block to Ba2+ at 10mm, but no block by 0.1mm quinidine. The blocking effects of TEA, Ba2+ and quinidine were reversible in all channels studied. The actions of TEA and Ba2+ appeared qualitatively different: in all four channels. TEA reduced the apparent unitary conductance, whereas Ba2+ decreased channel open probability.  相似文献   

6.
Summary K+ channels in cultured rat pancreatic islet cells have been studied using patch-clamp single-channel recording techniques in cell-attached and excised inside-out and outside-out membrane patches. Three different K+-selective channels have been found. Two inward rectifier K+ channels with slope conductances of about 4 and 17 pS recorded under quasi-physiological cation gradients (Na+ outside, K+ inside) and maximal conductances recorded in symmetrical K+-rich solutions of about 30 and 75 pS, respectively. A voltage- and calcium-activated K channel was recorded with a slope conductance of about 90 pS under the same conditions and a maximal conductance recorded in symmetrical K+-rich solutions of about 250 pS. Single-channel current recording in the cell-attached conformation revealed a continuous low level of activity in an apparently small number of both the inward rectifier K+ channels. But when membrane patches were excised from the intact cell a much larger number of inward rectifier K+ channels became transiently activated before showing an irreversible decline. In excised patches opening and closing of both the inward rectifier K+ channels were unaffected by voltage, internal Ca2+ or externally applied tetraethyl-ammonium (TEA) but the probability of opening of both inward rectifier K+ channels was reduced by internally applied 1–5mm adenosine-5-triphosphate (ATP). The large K+ channel was not operational in cell-attached membrane patches, but in excised patches it could be activated at negative membrane potentials by 10–7 to 10–6 m internal Ca2+ and blocked by 5–10mm external TEA.  相似文献   

7.
The vas deferens forms part of the male reproductive tract and extends from the cauda epididymis to the prostate. Using the patch clamp technique, we have identified a Ca2+-activated, voltage-dependent, maxi K+ channel on the apical membrane of epithelial cells cultured from human fetal vas deferens. The channel had a conductance of 250 pS in symmetrical 140 mm K+ solutions, and was highly selective for K+ over Na+. Channel activity was increased by depolarization and by an elevation of bath (cytoplasmic) Ca2+ concentration, and reduced by cytoplasmic Ba2+ (5 mm) but not by cytoplasmic TEA (10 mm). Channel activity was also dependent on the cation bathing the cytoplasmic face of the membrane, being higher in a Na+-rich compared to a K+-rich solution. We estimated that up to 600 maxi K+ channels were present on the apical membrane of a vas cell, and that their density was 1–2 per 2 of membrane. Activity of the channel was low on intact cells, suggesting that it does not contribute to a resting K+ conductance. However, fluid in the lumen of the human vas deferens has a high K+ concentration and we speculate that the maxi K+ channel could play a role in transepithelial K+ secretion.Funded by grants from the Cystic Fibrosis Trust and the Medical Research Council (UK). We thank Mr. David Stephenson for excellent technical assistance.  相似文献   

8.
Summary Cell-attached patch-clamp recordings from Ehrlich ascites tumor cells reveal nonselective cation channels which are activated by mechanical deformation of the membrane. These channels are seen when suction is applied to the patch pipette or after osmotic cell swelling. The channel activation does not occur instantaneously but within a time delay of 1/2 to 1 min. The channel is permeable to Ba2+ and hence presumably to Ca2+. It seems likely that the function of the nonselective, stretch-activated channels is correlated with their inferred Ca2+ permeability, as part of the volume-activated signal system. In isolated insideout patches a Ca2+-dependent, inwardly rectifying K+ channel is demonstrated. The single-channel conductance recorded with symmetrical 150 mm K+ solutions is for inward current estimated at 40 pS and for outward current at 15 pS. Activation of the K+ channel takes place after an increase in Ca2+ from 10–7 to 10–6 m which is in the physiological range. Patch-clamp studies in cellattached mode show K+ channels with spontaneous activity and with characteristics similar to those of the K+ channel seen in excised patches. The single-channel conductance for outward current at 5 mm external K+ is estimated at about 7 pS. A K+ channel with similar properties can be activated in the cellattached mode by addition of Ca2+ plus ionophore A23187. The channel is also activated by cell swelling, within 1 min following hypotonic exposure. No evidence was found of channel activation by membrane stretch (suction). The time-averaged number of open K+ channels during regulatory volume decrease (RVD) can be estimated at 40 per cell. The number of open K+ channels following addition of Ca2+ plus ionophore A23187 was estimated at 250 per cell. Concurrent activation in cell-attached patches of stretch-activated, nonselective cation channels and K+ channels in the presence of 3 mm Ca2+ in the pipette suggests a close spatial relationship between the two channels. In excised inside-out patches (with NMDG chloride on both sides) a small 5-pS chloride channel with low spontaneous activity is observed. The channel activity was not dependent on Ca2+ and could not be activated by membrane stretch (suction). In cell-attached mode singlechannel currents with characteristics similar to the channels seen in isolated patches are seen. In contrast to the channels seen in isolated patches, the channels in the cell-attached mode could be activated by addition of Ca2+ plus ionophore A23187. The channel is also activated by hypotonic exposure with a single-channel conductance at 7 pS (or less) and with a time delay at about 1 min. The number of open channels during RVD is estimated at 80 per cell. Two other types of Cl channels were regularly recorded in excised inside-out patches: a voltage-activated 400-pS channel and a 34-pS Cl channel which show properties similar to the Cl channel in the apical membrane in human airway epithelial cells. There is no evidence for a role in RVD for either of these two channels.  相似文献   

9.
Muscarinic m3 receptor-mediated changes in cytosolic Ca2+ concentration ([Ca2+]l) occur by activation of Ca2+ release channels present in the endoplasmic reticulum membrane and Ca2+ entry pathways across the plasma membrane. In this report we demonstrate the coupling of m3 muscarinic receptors to the activation of a voltage-insensitive, cation-selective channel of low conductance (3.2 ± 0.6 pS; 25 mm Ca2+ as charge carrier) in a fibroblast cell line expressing m3 muscarinic receptor clone (A9m3 cells). Carbachol (CCh)-induced activation of the cation-selective channel occurred both in whole cell and excised membrane patches (CCh on the external side), suggesting that the underlying mechanism involves receptor-channel coupling independent of intracellular messengers. In excised inside-out membrane patches from nonstimulated A9m3 cells GTP (10 μm) and GDP (10 μm) activated cation-selective channels with conductances of approximately 4.3 and 3.3 pS, (25 mm Ca2+ as charge carrier) respectively. In contrast, ATP (10 μm), UTP (10 μm) or CTP (10 μm) failed to activate the channel. Taken together, these results suggest that carbachol and guanine nucleotides regulate the activation of a cation channel that conducts calcium. Received: 14 November 1996/Revised: 4 April 1997  相似文献   

10.
Summary Single K+-selective channels were studied in excised inside-out membrane patches from dissociated mouse toe muscle fibers. Channels of 74 pS conductance in symmetrical 160mm KCl solutions were blocked reversibly by 10 m internal ATP and thus identified as ATP-sensitive K+ channels. The channels were also blocked reversibly bymm concentrations of internal adenosine, adenine and thymine, but not by cytosine and uracil. The efficacy of the reversible channel blockers was higher when they were present in internal NaCl instead of KCl solutions. An irreversible inhibition of ATP-sensitive K+ channels was observed after application of several sulphydryl-modifying substances in the internal solution: 0.5mm chloramine-T, 50mm hydrogen peroxide or 2mm n-ethylmaleimide (NEM). Largeconductance Ca-activated K+ channels were not affected by these reagents. The presence of 1mm internal ATP prevents the irreversible inhibition of ATP-sensitive K+ channels by NEM. The results suggest that internal Na+ ions increase the affinity of the ATP-sensitive K+ channel to ATP and to other reversible channel blockers and that a functionally important SH-group is located at or near the ATP-binding site.  相似文献   

11.
Phenothiazines (PTZ) such as chlorpromazine (CPZ) or trifluoperazine (TPZ) induced a sustained divalent cation-permeable channel activity when applied on either side of inside-out patches or on external side of cell-attached patches of adult rat ventricular myocytes. The percentage of active patches was 20%. In the case of CPZ, the K dof the dose-response curve was 160 m. CPZ-activated channels were potential-independent in the physiological range of membrane potential and were permeable to several divalent ions (Ba2+, Ca2+, Mg2+, Mn2+). At least three levels of currents were usually detected with conductances of 23, 50 and 80 pS in symmetrical 96 mm Ba2+ solution and 17, 36 and 61 pS in symmetrical 96 mm Ca2+ solution. Saturation curves corresponding to the three main conductances determined in Ba2+ symmetrical solutions (tonicity compensated with choline-Cl) gave maximum conductances of 36, 81 and 116 pS (with corresponding half-saturating concentration constants of 31.5, 38 and 34.5 mm). The corresponding conductance values were estimated to 1.7, 3.3 and 5.2 pS in symmetrical 1.8 mm Ba2+ and to 1.1, 2.4 and 3.7 pS in symmetrical 1.8 mm Ca2+ (the value in normal Tyrode solution). Channels were poorly permeable to monovalent cations, such as Na, with a P Ba/P Na ratio of 10. A PTZ-induced channel activity similar to that described in cardiac cells was also observed in cultured rat aortic smooth muscle cells but not in cultured neuroblastoma cells.PTZ-activated channels described in cardiac cells appear very similar to the sporadically active divalent ion permeable channels described in a previous paper (Coulombe et al., 1989). Surprisingly, when 100 m CPZ were applied to myocytes studied in the whole-cell configuration, and maintained at a holding potential of –80 mV in the presence of 24 mm external Ca2+ or Ba2+, no detectable macroscopic inward current could be observed, whereas the L-type Ca2+ current triggered by depolarizing pulses was markedly and reversibly reduced. The possible reasons are discussed.  相似文献   

12.
Summary K+ channels in inside-out patches from hamster insulin tumor (HIT) cells were studied using the patch-clamp technique. HIT cells provide a convenient system for the study of ion channels and insulin secretion. They are easy to culture, form gigaohm seals readily and secrete insulin in response to glucose. The properties of the cells changed with the passage number. For cell passage numbers 48 to 56, five different K+-selective channels ranging from 15 to 211 pS in symmetrical 140mm KCl solutions were distinguished. The channels were characterized by the following features: a channel with a conductance (in symmetrical 140mm KCl solutions) of 210 pS that was activated by noncyclic purine nucleotides and closed by H+ ions (pH=6.8); a 211 pS channel that was Ca2+-activated and voltage dependent; a 185 pS channel that was blocked by TEA but was insensitive to quinine or nucleotides; a 130 pS channel that was activated by membrane hyperpolarization; and a small conductance (15 pS) channel that was not obviously affected by any manipulation. As determined by radioimmunoassay, cells from passage number 56 secreted 917±128 ng/mg cell protein/48 hr of insulin. In contrast, cells from passage number 77 revealed either no channel activity or an occasional nonselective channel, and secreted only 29.4±8.5 ng/mg cell protein/48 hr of insulin. The nonselective channel found in the passage 77 cells had a conductance of 25 pS in symmetrical 140mm KCl solutions. Thus, there appears to be a correlation between the presence of functional K+ channels and insulin secretion.  相似文献   

13.
Lanthanide ions such as La3+ are frequently used as blockers to test the involvement of calcium channels in plant and animal signal transduction pathways. For example, the large rise in cytoplasmic Ca2+ concentration triggered by cold shock in Arabidopsis seedlings is effectively blocked by 10 mm La3+ and we show here that the simultaneous large membrane depolarization is similarly blocked. However, a pharmacological tool is only as useful as it is selective and the specificity of La3+ for calcium channels was brought into question by our finding that it also blocked a blue light (BL)-induced depolarization that results from anion channel activation and believed not to involve calcium channels. This unexpected inhibitory effect of La3+ on the BL-induced depolarization is explained by our finding that 10 mm La3+ directly and completely blocked the BL-activated anion channel when applied to excised patches. We have investigated the ability of La3+ to block noncalcium channels in Arabidopsis. In addition to the BL-activated anion channel, 10 mm La3+ blocked a cation channel and a stretch-activated channel in patches of plasma membrane excised from hypocotyl cells. In root cells, 10 mm La3+ inhibited the activity of an outward-rectifying potassium channel at the whole cell and single-channel level by 47% and 58%, respectively. We conclude that La3+ is a nonspecific blocker of multiple ionic conductances in Arabidopsis and may disrupt signal transduction processes independently of any effect on Ca2+ channels. Received: 28 July 1997/Revised: 13 November 1997  相似文献   

14.
Summary Alkalinization of the matrix side of the mitochondrial inner membrane by pH shifts from 6.8 to 8.3 caused a reversible increase in current of 3.2±0.2 pA (mean±se,n=21) at±40 mV measured using patch-clamp techniques. The current increase was reversed in a graded fashion by the addition of Mg2+ in 0.15m KCl corresponds to approximately 15 pS. Reversal potentials derived from whole patch currents indicated that the inner mitochondrial membrane was primarily cation selective at pH 6.8 with aP k/P Cl=32 (n=6). Treatment with alkaline pH (8.3) increased the current and anion permeability (P K/P Cl=16,n=6). The membrane becomes completely cation selective when low concentrations (12 m) of the drug propranolol are added. The amphiphilic drugs amiodarone (4 m), propranolol (70 m) and quinine (0.6mm) blocked almost all of the current. The pH-dependent current was also inhibited by tributyltin. These results are consistent with the presence of two pathways in the inner mitochondrial membrane. One is cation selective and generally open and the other is anion selective and induced by alkaline pH. The alkaline pH-activated channel likely corresponds to the inner membrane anion channel postulated by others from suspension studies.  相似文献   

15.
Summary Using the patch-clamp technique we have identified a Ca2+-sensitive, voltage-dependent, maxi-K+ channel on the basolateral surface of rat pancreatic duct cells. The channel had a conductance of 200 pS in excised patches bathed in symmetrical 150mm K+, and was blocked by 1mm Ba2+. Channel openstate probability (P o ) on unstimulated cells was very low, but was markedly increased by exposing the cells to secretin, dibutyryl cyclic AMP, forskolin or isobutylmethylxanthine. Stimulation also shifted theP o /voltage relationship towards hyperpolarizing potentials, but channel conductance was unchanged. If patches were excised from stimulated cells into the inside-out configuration,P o remained high, and was not markedly reduced by lowering bath (cytoplasmic) Ca2+ concentration from 2mm to 0.1 m. However, activated channels were still blocked by 1mm Ba2+. ChannelP o was also increased by exposing the cytoplasmic face of excised patches to the purified catalytic subunit of cyclic AMP-dependent protein kinase., We conclude that cyclic AMP-dependent phosphorylation can activate maxi-K+ channels on pancreatic duct cells via a stable modification of the channel protein itself, or a closely associated regulatory subunit, and that phosphorylation alters the responsiveness of the channels to Ca2+. Physiologically, these K+ channels may contribute to the basolateral K+ conductance of the duct cell and, by providing a pathway for current flow across the basolateral membrane, play an important role in pancreatic bicarbonate secretion.  相似文献   

16.
Two channels, distinguished by using single-channel patch-clamp, carry out potassium transport across the red cell membrane of lamprey erythrocytes. A small-conductance, inwardly rectifying K+-selective channel was observed in both isotonic and hypotonic solutions (osmolarity decreased by 50%). The single-channel conductance was 26 ± 3 pS in isotonic (132 mm K+) solutions and 24 ± 2 pS in hypotonic (63 mm K+) solutions. No outward conductance was found for this channel, and the channel activity was completely inhibited by barium. Cell swelling activated another inwardly rectifying K+ channel with a larger inward conductance of 65 pS and outward conductance of 15 pS in the on-cell configuration. In this channel, rectification was due to the block of outward currents by Mg2+ and Ca2+ ions, since when both ions were removed from the cytosolic side in inside-out patches the conductance of the channel was nearly ohmic. In contrast to the small-conductance channel, the swelling-activated channel was observed also in the presence of barium in the pipette. Neither type of channel was dependent on the presence of Ca2+ ions on the cytosolic side for activity. Received: 18 July 1997/Revised: 30 January 1998  相似文献   

17.
Summary Potassium channels in membranes of isolatedNecturus enterocytes were studied using the patch-clamp technique. The most frequent channel observed had a conductance of 170 pS and reversal potential of 0 mV in symmetrical potassium-rich solutions. Channels were highly K+ selective. Channel activity was modulated by membrane potential and cytosolic Ca2+ concentration. Channel openings occurred in characteristic bursts separated by long closures. During bursts openings were interrupted by brief closures. Two gating modes controlled channel opening. The primary gate's sensitivity to intracellular Ca2+ concentration and membrane potential crucially determined long duration closures and bursting. In comparison, the second gate determining brief closures was largely insensitive to voltage and intracellular Ca2+ concentration. The channel was reversibly blocked by cytosolic barium exposure in a voltage-sensitive manner. Blockade reduced open-state probability without altering single-channel conductance and could be described, at relatively high Ca2+ concentration, by a three-state model where Ba2+ interacted with the open channel with a dissociation constant of about 10–4 m at 0 mV.  相似文献   

18.
Summary Intact adrenal chromaffin granules and purified granule membrane ghosts were allowed to fuse with acidic phospholipid planar bilayer membranes in the presence of Ca2+ (1 mm). From both preparations, we were able to detect a large conductance potassium channel (ca. 160 pS in symmetrical 400 mm K+), which was highly selective for K+ over Na+ (P k/P Na = 11) as estimated from the reversal potential of the channel current. Channel activity was unaffected by charybdotoxin, a blocker of the [Ca2+] activated K+ channel of large conductance. Furthermore, this channel proved quite different from the previously described channels from other types of secretory vesicle preparations, not only in its selectivity and conductance, but also in its insensitivity to both calcium and potential across the bilayer. We conclude that the chromaffin granule membrane contains a K+-selective channel with large conductance. We suggest that the role of this channel may include ion movement during granule assembly or recycling, and do not rule out events leading to exocytosis.  相似文献   

19.
Summary Properties of the single Cl channels were studied in excised patches of surface membrane from molluscan neurones using single-channel recording technique. These channels are controlled by Ca2+ and K+ acting on cytoplasmic and outer membrane surfaces, respectively, and by the membrane potential. The channels display about 16 intermediate conductance sublevels, each of them being multiples of 12.5 pS. The upper level of the channel conductance is about 200 pS. The channel behavior is consistent with an aggregation of channel-forming subunits into a cluster.  相似文献   

20.
Summary The Ca2+-activated K+ channel in rat pancreatic islet cells has been studied using patch-clamp single-channel current recording in excised inside-out and outside-out membrane patches. In membrane patches exposed to quasi-physiological cation gradients (Na+ outside, K+ inside) large outward current steps were observed when the membrane was depolarized. The single-channel current voltage (I/V) relationship showed outward rectification and the null potential was more negative than –40 mV. In symmetrical K+-rich solutions the single-channelI/V relationship was linear, the null potential was 0 mV and the singlechannel conductance was about 250 pS. Membrane depolarization evoked channel opening also when the inside of the membrane was exposed to a Ca2+-free solution containing 2mm EGTA, but large positive membrane potentials (70 to 80 mV) were required in order to obtain open-state probabilities (P) above 0.1. Raising the free Ca2+ concentration in contact with the membrane inside ([Ca2+]i) to 1.5×10–7 m had little effect on the relationship between membrane potential andP. When [Ca2+]i was increased to 3×10–7 m and 6×10–7 m smaller potential changes were required to open the channels. Increasing [Ca2+]i further to 8×10–7 m again activated the channels, but the relationship between membrane potential andP was complex. Changing the membrane potential from –50 mV to +20 mV increasedP from near 0 to 0.6 but further polarization to +50 mV decreasedP to about 0.2. The pattern of voltage activation and inactivation was even more pronounced at [Ca2+]i=1 and 2 m. In this situation a membrane potential change from –70 to +20 mV increasedP from near 0 to about 0.7 but further polarization to +80 mV reducedP to less than 0.1. The high-conductance K+ channel in rat pancreatic islet cells is remarkably sensitive to changes in [Ca2+]i within the range 0.1 to 1 m which suggests a physiological role for this channel in regulating the membrane potential and Ca2+ influx through voltage-activated Ca2+ channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号