首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cardiac neural crest, a subpopulation of the neural crest, contributes to the cardiac outflow tract formation during development. However, how it follows the defined long-range migratory pathway remains unclear. We show here that the migrating cardiac neural crest cells (NCCs) express Plexin-A2, Plexin-D1 and Neuropilin. The membrane-bound ligands for Plexin-A2, Semaphorin (Sema)6A and Sema6B, are expressed in the dorsal neural tube and the lateral pharyngeal arch mesenchyme (the NCC “routes”). Sema3C, a ligand for Plexin-D1/neuropilin-1, is expressed in the cardiac outflow tract (the NCC “target”). Sema6A and Sema6B repel neural crest cells, while Sema3C attracts neural crest cells. Sema6A and Sema6B repulsion and Sema3C attraction are diminished either when Plexin-A2 and Neuropilin-1, or when Plexin-D1, respectively, are knocked down in NCCs. When RNAi knockdown diminishes each receptor in NCCs, the NCCs fail to migrate into the cardiac outflow tract in the developing chick embryo. Furthermore, Plexin-A2-deficient mice exhibit defects of cardiac outflow tract formation. We therefore conclude that the coordination of repulsive cues provided by Sema6A/Sema6B through Plexin-A2 paired with the attractive cue by Sema3C through Plexin-D1 is required for the precise navigation of migrating cardiac NCCs.  相似文献   

2.
Cranial neural crest cells (NCCs) migrate into the pharyngeal arches in three primary streams separated by two cranial neural crest (NC)-free zones. Multiple tissues have been implicated in the guidance of cranial NCC migration; however, the signals provided by these tissues have remained elusive. We investigate the function of semaphorins (semas) and their receptors, neuropilins (nrps), in cranial NCC migration in zebrafish. We find that genes of the sema3F and sema3G class are expressed in the cranial NC-free zones, while nrp2a and nrp2b are expressed in the migrating NCCs. sema3F/3G expression is expanded homogeneously in the head periphery through which the cranial NCCs migrate in lzr/pbx4 mutants, in which the cranial NC streams are fused. Antisense morpholino knockdown of Sema3F/3G or Nrp2 suppresses the abnormal cranial NC phenotype of lzr/pbx4 mutants, demonstrating that aberrant Sema3F/3G-Nrp2 signaling is responsible for this phenotype and suggesting that repulsive Sema3F/3G-Npn2 signaling normally contributes to the guidance of migrating cranial NCCs. Furthermore, global over-expression of sema3Gb phenocopies the aberrant cranial NC phenotype of lzr/pbx4 mutants when endogenous Sema3 ligands are knocked down, consistent with a model in which the patterned expression of Sema3 ligands in the head periphery coordinates the migration of Nrp-expressing cranial NCCs.  相似文献   

3.
Neural crest cell (NCC) invasion is a complex sculpting of individual cells into organized migratory streams that lead to organ development along the vertebrate axis. Key to our understanding of how molecular mechanisms modulate the NCC migratory pattern is information about cell behaviors, yet it has been challenging to selectively mark and analyze migratory NCCs in a living embryo. Here, we apply an innovative in vivo strategy to investigate chick NCC behaviors within the rhombomere 4 (r4) migratory stream by combining photoactivation of KikGR and confocal time-lapse analysis of H2B-mRFP1 transfected NCCs. We find that the spatial order of r4 NCC emergence translates into a distal-to-proximal invasion of the 2nd branchial arch. Lead and trailing NCCs display similar average cell speeds and directionalities. Surprisingly, we find that lead NCCs proliferate along the migratory route and grow to outnumber trailing NCCs by nearly 3 to 1. A simple, cell-based computational model reproduces the r4 NCC migratory pattern and predicts the invasion order can be disrupted by slower, less directional lead cells or by environmental noise. Our results suggest a model in which NCC behaviors maintain a spatially-ordered invasion of the branchial arches with differences in cell proliferation between the migratory front and trailing NCCs.  相似文献   

4.
Eph receptors and their ligands ephrins have been implicated in guiding the directed migration of neural crest cells (NCCs). In this study, we found that Wnt1-Cre-mediated expression of ephrinA5-Fc along the dorsal midline of the dien- and mesencephalon resulted in severe craniofacial malformation of mouse embryo. Interestingly, expression of cephalic NCC markers decreased significantly in the frontonasal process and branchial arches 1 and 2, which are target areas for the migratory cephalic NCCs originating in the dien- and mesencephalon. In addition, these craniofacial tissues were much smaller in mutant embryos expressing ephrinA5-Fc. Importantly, EphA7-positive cephalic NCCs were absent along the dorsal dien- and mesencephalon of mutant embryos expressing ephrinA5-Fc, suggesting that the generation of cephalic NCCs is disrupted due to ephrinA5-Fc expression. NCC explant experiments suggested that ephrinA5-Fc perturbed survival of cephalic NCC precursors in the dorsal midline tissue rather than affecting their migratory capacity, which was consistent with our previous report that expression of ephrinA5-Fc in the dorsal midline is responsible for severe neuroepithelial cell apoptotic death. Taken together, our findings strongly suggest that expression of ephrinA5-Fc decreases a population of cephalic NCC precursors in the dorsal midline of the dien- and mesencephalon, thereby disrupting craniofacial development in the mouse embryos.  相似文献   

5.
6.
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question of when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.Key words: neural crest cell, multipotent, prespecification, neuropilin, semaphorin, migration, cell fate  相似文献   

7.
Cell migration is essential for proper development of numerous structures derived from embryonic neural crest cells (NCCs). Although the migratory pathways of NCCs have been determined, the molecular mechanisms regulating NCC motility remain unclear. NCC migration is integrin dependent, and recent work has shown that surface expression levels of particular integrin alpha subunits are important determinants of NCC motility in vitro. Here, we provide evidence that rapid cranial NCC motility on laminin requires integrin recycling. NCCs showed both ligand- and receptor-specific integrin regulation in vitro. On laminin, NCCs accumulated internalized laminin but not fibronectin receptors over 20 min, whereas on fibronectin neither type of receptor accumulated internally beyond 2 min. Internalized laminin receptors colocalized with receptor recycling vesicles and were subsequently recycled back to the cell surface. Blocking receptor recycling with bafilomycin A inhibited NCC motility on laminin, indicating that substratum-dependent integrin recycling is essential for rapid cranial neural crest migration.  相似文献   

8.
In the beginning     
Neural crest cells (NCCs) are migratory cells that delaminate from the neural tube early in development and then disseminate throughout the embryo to give rise to a wide variety of cell types that are key to the vertebrate body plan. During their journey from the neural tube to their peripheral targets, NCCs progressively differentiate, raising the question when the fate of an individual NCC is sealed. One hypothesis suggests that the fate of a NCC is specified by target-derived signals emanating from the environment they migrate through, while another hypothesis proposes that NCCs are already specified to differentiate along select lineages at the time they are born in the neural tube, with environmental signals helping them to realize their prespecified fate potential. Alternatively, both mechanisms may cooperate to drive NCC diversity. This review highlights recent advances in our understanding of prespecification during trunk NCC development.  相似文献   

9.
10.
Neural crest cells (NCCs) are a multipotent embryonic cell population that contributes to the formation of various craniofacial structures including teeth. It has been generally believed that dental enamel is an ectodermal derivative, whereas the dentin–pulp complex and the surrounding supporting tissues originate from NCC-derived mesenchyme. These traditional concepts stem mainly from several early studies of fishes and amphibians. Recently, Wnt1-Cre/R26R mice, a mouse model for NCC lineage analysis, revealed the contribution of NCCs to mammalian tooth development. However, the discrepancy of expression patterns between different NCC-specific transgenic mouse lines makes it compulsory to revisit the cell lineage in mammalian tooth development. Here, we reevaluated the NCC lineage during mouse tooth development by using P0-Cre/R26R mice, another NCC-specific transgenic mouse line. Inconsistent with the traditional concepts, we observed the potential contribution of NCCs to developing enamel organ and enamel formation. We also demonstrated that the P0-Cre transgene was specifically expressed in migrating NCC in the hindbrain region, where NCC contributes to tooth, validating their applicability for NCC lineage analysis. Our unanticipated finding may change the general understanding of tooth development and provide new insights into dental stem cell biology.  相似文献   

11.
The neural crest is an excellent model to study embryonic cell migration, since cell behaviors can be studied in vivo with advanced optical imaging and molecular intervention. What is unclear is how molecular signals direct neural crest cell (NCC) migration through multiple microenvironments and into specific targets. Here, we tested the hypothesis that the invasion of cranial NCCs, specifically the rhombomere 4 (r4) migratory stream into branchial arch 2 (ba2), is due to chemoattraction through neuropilin-1-vascular endothelial growth factor (VEGF) interactions. We found that the spatio-temporal expression pattern of VEGF in the ectoderm correlated with the NCC migratory front. RT-PCR analysis of the r4 migratory stream showed that ba2 tissue expressed VEGF and r4 NCCs expressed VEGF receptor 2. When soluble VEGF receptor 1 (sVEGFR1) was injected distal to the r4 migratory front, to bind up endogenous VEGF, NCCs failed to completely invade ba2. Time-lapse imaging revealed that cranial NCCs were attracted to ba2 tissue or VEGF sources in vitro. VEGF-soaked beads or VEGF-expressing cells placed adjacent to the r4 migratory stream caused NCCs to divert from stereotypical pathways and move towards an ectopic VEGF source. Our results suggest a model in which NCC entry and invasion of ba2 is dependent on chemoattractive signaling through neuropilin-1-VEGF interactions.  相似文献   

12.
13.
Gap junctions are proteinaceous channels that reside at the plasma membrane and permit the exchange of ions, metabolites, and second messengers between neighboring cells. Connexin proteins are the subunits of gap junction channels. Mutations in zebrafish cx43 cause the short fin (sof(b123)) phenotype which is characterized by short fins due to defects in length of the bony fin rays. Previous findings from our lab demonstrate that Cx43 is required for both cell proliferation and joint formation during fin regeneration. Here we demonstrate that semaphorin3d (sema3d) functions downstream of Cx43. Semas are secreted signaling molecules that have been implicated in diverse cellular functions such as axon guidance, cell migration, cell proliferation, and gene expression. We suggest that Sema3d mediates the Cx43-dependent functions on cell proliferation and joint formation. Using both in situ hybridization and quantitative RT-PCR, we validated that sema3d expression depends on Cx43 activity. Next, we found that knockdown of Sema3d recapitulates all of the sof(b123) and cx43-knockdown phenotypes, providing functional evidence that Sema3d acts downstream of Cx43. To identify the potential Sema3d receptor(s), we evaluated gene expression of neuropilins and plexins. Of these, nrp2a, plxna1, and plxna3 are expressed in the regenerating fin. Morpholino-mediated knockdown of plxna1 did not cause cx43-specific defects, suggesting that PlexinA1 does not function in this pathway. In contrast, morpholino-mediated knockdown of nrp2a caused fin overgrowth and increased cell proliferation, but did not influence joint formation. Moreover, morpholino-mediated knockdown of plxna3 caused short segments, influencing joint formation, but did not alter cell proliferation. Together, our findings reveal that Sema3d functions in a common molecular pathway with Cx43. Furthermore, functional evaluation of putative Sema3d receptors suggests that Cx43-dependent cell proliferation and joint formation utilize independent membrane-bound receptors to mediate downstream cellular phenotypes.  相似文献   

14.
Summary The expression of the neural crest cell (NCC) markers acetylcholinesterase (AChE) and the HNK-1-epitope is compared from the emigration of cephalic NCC until the formation of the cranial nerves V-X in chicken and quail hindbrain. We show that NCC transiently express acetylcholinesterase (AChE) activity during their emigration; NCC migrate into butyrylcholinesterase (BChE)-positive areas of the cranial mesenchyme. Along these migratory tracks that foreshadow the course of later projecting cranial nerves, BChE increases strongly in cells that may represent immature Schwann cells. Both AChE and BChE, but not HNK-1, are expressed in the ectodermal placodes. In NCC, HNK-1 is expressed strongly only when they approach their destination sites. Their intense expression of HNK-1 then leads to the establishment of tunnel-shaped HNK-1 matrices, within which G4-positive cranial neurites begin to extend. We conclude that AChE and HNK-1 expression in cephalic NCC serve different functions, since AChE is related to their migration, and HNK-1 to their aggregation and the formation of an extracellular neurite scaffold.  相似文献   

15.
Enteric neural crest cells (NCC) are multipotent progenitors which give rise to neurons and glia of the enteric nervous system (ENS) during fetal development. Glial cell line-derived neurotrophic factor (GDNF)/RET receptor tyrosine kinase (Ret) signaling is indispensable for their survival, migration and differentiation. Using microarray analysis and isolated NCCs, we found that 45 genes were differentially expressed after GDNF treatment (16 h), 29 of them were up-regulated including 8 previously undescribed genes. Prokineticin receptor 1 (PK-R1), a receptor for Prokineticins (Prok), was identified in our screen and shown to be consistently up-regulated by GDNF in enteric NCCs. Further, PK-R1 was persistently expressed at a lower level in the enteric ganglions of the c-Ret deficient mice when compared to that of the wild-type littermates. Subsequent functional analysis showed that GDNF potentiated the proliferative and differentiation effects of Prok-1 by up-regulating PK-R1 expression in enteric NCCs. In addition, expression analysis and gene knock-down experiments indicated that Prok-1 and GDNF signalings shared some common downstream targets. More importantly, Prok-1 could induce both proliferation and expression of differentiation markers of c-Ret deficient NCCs, suggesting that Prok-1 may also provide a complementary pathway to GDNF signaling. Taken together, these findings provide evidence that Prok-1 crosstalks with GDNF/Ret signaling and probably provides an additional layer of signaling refinement to maintain proliferation and differentiation of enteric NCCs.  相似文献   

16.
Neural crest cells (NCCs) are a transient population of cells present in vertebrate development that emigrate from the dorsal neural tube (NT) after undergoing an epithelial-mesenchymal transition 1,2. Following EMT, NCCs migrate large distances along stereotypic pathways until they reach their targets. NCCs differentiate into a vast array of cell types including neurons, glia, melanocytes, and chromaffin cells 1-3. The ability of NCCs to reach and recognize their proper target locations is foundational for the appropriate formation of all structures containing trunk NCC-derived components 3. Elucidating the mechanisms of guidance for trunk NCC migration has therefore been a matter of great significance. Numerous molecules have been demonstrated to guide NCC migration 4. For instance, trunk NCCs are known to be repelled by negative guidance cues such as Semaphorin, Ephrin, and Slit ligands 5-8. However, not until recently have any chemoattractants of trunk NCCs been identified 9. Conventional in vitro approaches to studying the chemotactic behavior of adherent cells work best with immortalized, homogenously distributed cells, but are more challenging to apply to certain primary stem cell cultures that initially lack a homogenous distribution and rapidly differentiate (such as NCCs). One approach to homogenize the distribution of trunk NCCs for chemotaxis studies is to isolate trunk NCCs from primary NT explant cultures, then lift and replate them to be almost 100% confluent. However, this plating approach requires substantial amounts of time and effort to explant enough cells, is harsh, and distributes trunk NCCs in a dissimilar manner to that found in in vivo conditions. Here, we report an in vitro approach that is able to evaluate chemotaxis and other migratory responses of trunk NCCs without requiring a homogenous cell distribution. This technique utilizes time-lapse imaging of primary, unperturbed trunk NCCs inside a modified Zigmond chamber (a standard Zigmond chamber is described elsewhere10). By exposing trunk NCCs at the periphery of the culture to a chemotactant gradient that is perpendicular to their predicted natural directionality, alterations in migratory polarity induced by the applied chemotactant gradient can be detected. This technique is inexpensive, requires the culturing of only two NT explants per replicate treatment, avoids harsh cell lifting (such as trypsinization), leaves trunk NCCs in a more similar distribution to in vivo conditions, cuts down the amount of time between explantation and experimentation (which likely reduces the risk of differentiation), and allows time-lapse evaluation of numerous migratory characteristics.  相似文献   

17.
Most of the bone, cartilage and connective tissue of the lower jaw is derived from cranial neural crest cells (NCCs) arising from the posterior midbrain and hindbrain. Multiple factors direct the patterning of these NCCs, including endothelin-1-mediated endothelin A receptor (Edn1/Ednra) signaling. Loss of Ednra signaling results in multiple defects in lower jaw and neck structures, including homeotic transformation of lower jaw structures into upper jaw-like structures. However, since the Ednra gene is expressed by both migrating and post-migrating NCCs, the actual function of Ednra in cranial NCC development is not clear. Ednra signaling could be required for normal migration or guidance of NCCs to the pharyngeal arches or in subsequent events in post-migratory NCCs, including proliferation and survival. To address this question, we performed a fate analysis of cranial NCCs in Ednra-/- embryos using the R26R;Wnt1-Cre reporter system, in which Cre expression within NCCs results in permanent beta-galactosidase activity in NCCs and their derivatives. We find that loss of Ednra does not detectably alter either migration of most cranial NCCs into the mandibular first arch and second arch or their subsequent proliferation. However, mesenchymal cell apoptosis is increased two fold in both E9.5 and E10.5 Ednra-/- embryos, with apoptotic cells being present in and just proximal to the pharyngeal arches. Based on these studies, Ednra signaling appears to be required by most cranial NCCs after they reach the pharyngeal arches. However, a subset of NCCs appear to require Ednra signaling earlier, with loss of Ednra signaling likely leading to premature cessation of migration into or within the arches and subsequent cell death.  相似文献   

18.
C E Moase  D G Trasler 《Teratology》1990,42(2):171-182
Splotch (Sp) and splotch-delayed (Spd) are allelic mutations on chromosome 1 of the mouse. Embryos homozygous for either allele have neural tube defects (NTDs) and deficiencies in neural crest cell (NCC) derived structures. The fact that Spd mouse mutants sometimes have deficiencies in NCC derivatives in the absence of an NTD led to the hypothesis that neurulation and the release of NCCs may depend on a regulatory event that is common to both processes. Therefore, it may be possible to understand the cause of NTDs in these mutants by examining the basis of aberrant NCC derivatives. Caudal neural tubes were excised from day 9 Sp and Spd embryos and placed into gelatin-coated tissue culture dishes, or 3-dimensional basement membrane matrigel, and cultured for 72 hours. A cytogenetic marker was used to genotype the embryos. In planar cultures, no morphological differences were observed between NCCs from neural tube explants of Spd mutants compared to those from heterozygous or wild-type embryos. However, there appeared to be a delay in the release of NCCs from the neural tube in both Sp and Spd mutants, which was particularly evident in Sp. After 24 hours in culture, the extent of NCC outgrowth, as well as the number of NCCs emigrating from explanted neural tubes, was significantly lower in Sp and Spd mutant cultures than in controls. No differences were observed in the mitotic indices among cells which had emigrated. By 72 hours, mutant cultures and their non-mutant counterparts were similar in terms of outgrowth, cell number, and migratory capability. After 24 hours in 3-dimensional basement membrane matrigel, cell outgrowth from Sp explants was also significantly less than controls. The pattern of NCC outgrowth in both types of culture conditions indicates a 24 hour delay in mutant cultures compared to controls. This stems from a delay in the release of NCCs from the neural tube, suggesting that the defect lies within the neuroepithelium with respect to the release of NCCs.  相似文献   

19.
Objectives:Osteosarcoma (OS) is one of the two most common malignant bone tumors among children and teens but it is still a rare disorder. Semaphorin 4D (Sema4D) has been reported to play a specific role in human cancers. The aim of this study was to explore the function of Sema4D in the tumorigenesis and development of OS.Methods:10 pairs of OS tissues and paracancerous normal tissues from human OS samples and OS cell lines were used. Western blot assay was performed to detect the protein expression of Sema4D, Plexin-B1, and associated proteins of Pyk2-PI3K/AKT pathway. To explore the effect of Sema4D in the progression of OS, we reduced the expression of Sema4D. The effect of Sema4D knockdown on cell proliferation was explored by CCK-8 assay and clone formation assay. The effect of Sema4D knockdown on cell migration and invasion was assessed by Transwell assay.Results:Sema4D was overexpressed in OS tissues and cell lines. Sema4D knockdown notably suppressed cell proliferation in OS cells. Cell migration and invasion were reduced by Sema4D knockdown. Sema4D/Plexin-B1 facilitated OS, progression by promoting Pyk2-PI3K/AKT pathway.Conclusion:Sema4D/Plexin-B1 promoted the development of OS so Sema4D might be a potential target of treatment for patients with OS.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号