首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The secretory glycoproteins synthesized by hepatoma tissue culture (HTC) cells were resolved by two-dimensional polyacrylamide gel electrophoresis of media from cells that were grown in the presence of [(3)H]fucose. These cells synthesize and secrete a complex set of fucose-containing glycoproteins. These secretory glycoproteins are distinct from those glycoproteins present in the plasma membrane of HTC cells. Incubation of HTC cells with dexamethasone has a pronounced effect on the quality and quantity (denoted here as the program) of secretory protein synthesis, as assayed by the short-term incorporation of labeled mannose, fucose, or methionine. The synthesis of two mannose- and fucose- containing glycoprotein series, one of 50,000 mol wt and a more heterogeneous series with mol wt of 35,000-50,000, is increased to a high level by the hormone; conversely, the synthesis of other secretory proteins, particularly one with mol wt of 70,000, is decreased or stopped completely. The synthesis of some major secretory proteins is not affected by the hormone. Dexamethasone has less of an effect on the composition of either total cell membrane glycoprotein or plasma membrane glycoprotein. But there is a decrease in the synthesis of a major membrane glycoprotein series with mol wt of 140,000. These effects of dexamethasone are relatively specific to HTC cells. Neither Reuber H-35 cells nor primary cultures of rat hepatocytes show the same response to the steroid. Two variant HTC cell lines, which were selected for their resistance to dexamethasone inhibition of extracellular plasminogen activator activity, respond only partially to the steroid-induced regulation of the secretory and membrane glycoproteins.  相似文献   

2.
Nuclei from hepatoma tissue culture (HTC) cells were isolated by standard methods and incubated in media commonly used for nuclease digestions (DNAase I and micrococcal nuclease) and for in vitro RNA synthesis. During the incubation, histones can be deacetylated from both control cells and cells treated with 6 mM sodium butyrate to enhance the levels of histone acetylation. Deacetylation of histone is much more apparent in nuclei isolated from sodium butyrate-treated cells. Inclusion of 6 mM sodium butyrate in the incubation medium effectively inhibits the endogenous deacetylase activity acting on histones H3 and H4, whereas sodium acetate at the same concentration has very little inhibitory effect.  相似文献   

3.
Lipoprotein apolipoprotein synthesis by human hepatoma cells in culture   总被引:16,自引:0,他引:16  
Lipoprotein synthesis was demonstrated by double diffusion with low density lipoprotein antibody, and by 3H-labeled amino acid incorporation into proteins of the d less than 1.063 g/ml centrifugally isolated lipoprotein fraction. Radioactive label was incorporated predominantly into apolipoprotein B (60%), apolipoprotein A-I (20%) and apolipoprotein C (12%), as determined by Sepharose column chromatography and polyacrylamide gel electrophoresis. Incorporation of radioactive label into apolipoprotein B was inhibited by the presence of albumin in the medium, and was restored to control levels with the addition of 1 mM oleic acid, indicating that cell synthesis of apolipoproteins could be modified by culture conditions. The human hepatoma cell line, Hep G2, provides a potential in vitro model for the study of regulation of human hepatic lipoprotein and apolipoprotein synthesis.  相似文献   

4.
5.
Effects of glutamine on glutamine synthetase (GS) activity of hepatoma tissue culture (HTC) cells were studied with the aid of a specific goat anti-rat GS serum. Immunodiffusion and immunoelectrophoretic tests show that rat liver GS and HTC cell GS are immunologically similar but not identical. Immunotitrations of HTC cell extracts demonstrate that in cells incubated in high concentrations (5 mM) of glutamine, a cross-reacting form of GS with a decreased enzyme-specific activity accumulates. On prolonged incubation of cells in high glutamine, there is net degradation of GS to form immunologically inactive products. Radioimmunoprecipitation experiments show that glutamine acts by accelerating the degradation of preformed GS.  相似文献   

6.
7.
8.
9.
Control of DNA synthesis in tissue culture cells   总被引:1,自引:0,他引:1  
Summary Eukaryotic DNA is functionally divided into thousands of replicons, each of which may be duplicated at a characteristic time within the DNA synthetic (S) period. Our approach toward an understanding of the molecular mechanisms which control orderly eukaryotic DNA synthesis has been: (a) to devise a method of cell synchrony in a suitable tissue culture system wherein all cells in the population enter and traverse the S period with a high degree of synchrony; (b) to determine, utilizing this system, precisely when during the S period critical events and macromolecular syntheses occur; and (c) to examine, by polyacrylamide-gel electrophoresis, the spectrum of proteins which become associated with chromatin during the S period in such a way as to suggest their involvement with DNA synthesis. Possible mechanisms for control are discussed based on the results presented here. Presented in the formal symposium on Mechanisms of Cellular Control at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. The work reported in this communication was supported by NCI Grant CA 18612 to A.B.P.  相似文献   

10.
The turnover of the plasma membrane proteins of hepatoma tissue culture cells was examined by three different methods--loss of polypeptides labeled in situ by lactoperoxidase-catalyzed iodination, loss of membrane polypeptides labeled with amino acid precursors, and loss from the membrane of fucose-labeled polypeptides. In both logarithmically growing and density-inhibited cells the proteins of the membrane are degraded with a half-life of about 100 hours. This is longer than the half-life of total cell protein, 50 to 60 hours, and longer than the doubling time of the cells, about 30 hours. Similar values for the rate of degradation of the membrane proteins were obtained by each of the three techniques. The same fucose-labeled polypeptides are present in the microsomal and the plasma membrane fractions of hepatoma tissue culture cells as analyzed by electrophoresis in dodecyl sulfate-acrylamide gels. But the fucose-labeled polypeptides were lost from the microsomal fraction at a faster rate than from the plasma membrane. Autoradiographic and double labeling techniques using 125I and 131I, or [3H]leucine and [14C]leucine were used to measure the relative rates of degradation of the proteins in the plasma membrane. All of the leucine-labeled polypeptides and the iodinated polypeptides had similar rates of degradation. These results support a model for the biogenesis of the plasma membrane in which the proteins are incorporated and removed in large structural units.  相似文献   

11.
Upon removal of the nucleus from rat hepatoma tissue culture cells, levels of the enzyme tyrosine aminotransferase no longer change in response to withdrawal of glucocorticoids. The rate of tyrosine aminotransferase degradation is drastically reduced in rat hepatoma tissue culture cytoplasts leading to stabilization of pre-existing levels of tyrosine aminotransferase. Moreover, the rate of synthesis of the enzyme in cytoplasts is very low near that observed in uninduced whole cells. These effects of enucleation occur very rapidly and appear to be specific for tyrosine aminotransferase and a small number of other unstable hepatoma proteins. A nuclear effect is thus directly involved in the control of tyrosine aminotransferase degradation and synthesis.  相似文献   

12.
13.
In certain lines of hepatoma tissue culture (HTC) cells, glutamine synthetase (EC 6.3.1.2) specific activity is increased 2.5- to 3-fold by the addition of glucocorticoids to the growth media. Actinomycin D blocks both the induction and deinduction of glutamine synthetase by glucocorticoids, suggesting a requirement of RNA synthesis for both processes. Using an antiserum raised against purified rat liver glutamine synthetase, we have precipitated radiolabeled glutamine synthetase from HTC cells. Electrophoresis of the immunoprecipitates on sodium didecyl sulfate-acrylamide gels isolates the subunit of glutamine synthetase and permits the radioactivity in the glutamine synthetase band to be quantitated. Using this technique, we have investigated the effect of dexamethasone, a synthetic glucocorticoid, on the rates of synthesis and degradation of glutamine synthetase. Dexamethasone (10(-7) M) increases the rate of synthesis of glutamine synthetase 2- to 3-fold but has no effect on the rate of glutamine synthetase degradation. The rates of total cell protein synthesis and degradation are not significantly affected by dexamethasone. The presence of actinomycin D at the time of removal of dexamethasone from induced cells prevents the fall in the induced rate of synthesis of glutamine synthetase normally seen when the inhibitor is removed from the culture medium. The regulation of glutamine synthetase by dexamethasone has been compared to the regulation of another dexamethasone-inducible enzyme in HTC cells, tyrosine aminotransferase, and been found to be similar in all parameters studied.  相似文献   

14.
Low concentrations of cycloheximide added to rose suspension culture cells stopped protein synthesis and drastically reduced the incorporation of 14C into arginine, lysine, isoleucine, threonine, and valine.  相似文献   

15.
16.
17.
18.
In this work it was demonstrated that the incubation of hepatoma cultured cells (HTC 7288 c) with 11-deoxycorticosterone (DOC) ranging from 0 to 10–4M concentration provoked a dose-dependent inhibition in the conversion of [1–14C] eicosatrienoic acid to arachidonic acid. This steroid also produced an increase in the uptake of exogenous 20: 3 (n-6) acid. The depressive effect evoked by DOC on 5 desaturating activity was reflected on the fatty acid composition changes of the hepatoma cells. The 5 desaturase activity was inhibited by a soluble factor that would be induced by the hormone and that was present in the cytosol fraction from DOC-treated cells, corresponding to a low molecular mass below 25 kDa. Presently we report that an 11--OH group on the steroid molecule is not an essential requirement for the production of a 5 desaturase inhibitory factor.Members of the Carrera del Investigador Científico, CONICET, Argentina  相似文献   

19.
A brief treatment of H35 hepatoma cells with lysolecithin resulted in a cell population which is permeable to low-molecular weight charged molecules that cannot normally cross the plasma membrane. These include deoxynucleotide and nucleotide triphosphates, folyl and methotrexate polyglutamates, and trypan blue. As a result dTTP can be incorporated into the DNA of the permeable cells, providing the required nucleotides and deoxynucleotides are added to the medium. This result, combined with only a slight observed loss (20–25%) in total cell protein, lactate dehydrogenase (EC 1.1.1.27) activity and tyrosine aminotransferase (EC 2.6.1.5) activity, demonstrated that permeation of the cells does not extensively disrupt membrane integrity. Further support for this view comes from the fact that the permeable cells could seal when placed in enriched medium. The process of sealing was inhibited by cycloheximide and tunicamycin. The sealed cells, whose surfaces appeared identical to those of untreated cells by scanning electron microscopy, were fully capable of cell division when exposed to serum. Values for several other parameters, including dexamethasone-dependent tyrosine aminotransferase induction, thymidine incorporation into DNA, leucine incorporation into protein and folate coenzyme transport, supported the conclusion that sealed cells and untreated H35 cells have identical properties. Based on the characteristics of the permeable and sealed H35 cells, a discussion of the experimental potential of these preparations for studying macromolecular synthesis, investigating enzymes in situ and depleting cells of folate coenzymes is presented.  相似文献   

20.
Human serum spreading factor (SF) is a cell adhesion and spreading-promoting glycoprotein purified from serum or plasma that mediates effects in a wide variety of animal cell culture systems. HepG2 human hepatoma cells were found to synthesize and secrete SF into culture medium. Quantitative immunoassay of the protein indicated a concentration of about 1 microgram/ml in 48 hr-conditioned medium from confluent cultures. Although fibronectin also was synthesized and secreted into the culture medium, HepG2 cell spreading was observed in response to human serum SF, but not in response to human plasma fibronectin. Immunoprecipitation of SF from culture medium of cells metabolically-labeled with leucine, fucose or glucosamine identified a single form of the molecule of approximately 70,000 daltons. Treatment of cultures with tunicamycin inhibited incorporation of fucose and glucosamine into immunoprecipitated SF, but did not prevent synthesis and secretion of the protein. Electrophoretic analysis and cell spreading assays showed that SF secreted by tunicamycin-treated HepG2 cells was of molecular weight (mw) approximately 60,000, and was biologically active.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号