首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effectors of fatty acid synthesis in hepatoma tissue culture cells   总被引:1,自引:0,他引:1  
An investigation was undertaken to better understand the process of fatty acid synthesis in hepatoma tissue culture (HTC) cells. By comparing the findings to the normal liver some of the differences between normal and cancer tissue were defined. Incubation of the HTC cells in a buffered salt-defatted albumin medium showed that fatty acid synthesis was dependent upon the addition of substrate. The order of stimulation was glucose + pyruvate ~- glucose + alanine ~- glucose + lactate ~- pyruvate > glucose > alanine ? no additions. Fatty acid synthesis in HTC cells was decreased by oleate. In these respects HTC cells are similar to the liver; however, in contrast to the normal liver, N6, O2-dibutyryl cyclic adenosine 3′,5′-monophosphate (dibutyryl-cAMP) did not inhibit glycolysis or fatty acid synthesis. The cytoplasmic redox potential, as reflected by the lactate to pyruvate ratio, was found to be elevated compared to normal liver but unchanged by the addition of dibutyryl cAMP. Since higher rates of fatty acid synthesis are associated with lower lactate-to-pyruvate ratios in normal liver, it was expected that by decreasing the lactate-to-pyruvate ratio in HTC cells the rate of fatty acid synthesis would increase. One way to lower the lactate to pyruvate ratio is to increase the activity of the malate-aspartate shuttle. Stimulators of the hepatic malate-aspartate shuttle in normal liver (ammonium ion, glutamine, and lysine) had mixed effects on the redox state and fatty acid synthesis in HTC cells. Both ammonium ion and glutamine decreased the redox potential and increased the rate of fatty acid synthesis. Lysine was without effect on either process. Since NH4Cl and glutamine stimulate the movement of reducing equivalents into the mitochondria and decrease the redox potential, then the stimulation of fatty acid synthesis by NH4Cl and glutamine may be due to an increase in the movement of reducing equivalents into the mitochondria. However, if the shuttle were rate determining for fatty acid synthesis the rate from added lactate would be the same as from glucose alone but would be lower than from pyruvate which does not require the movement of reducing equivalents. This was not the case. Lactate and pyruvate gave comparable rates which were higher than glucose alone. Other possible sites of stimulation were investigated. The possibility that NH4+ and glutamine stimulated fatty acid synthesis by activating pyruvate dehydrogenase was excluded by finding that dichloroacetate, an activator of pyruvate dehydrogenase, did not stimulate fatty acid synthesis when glucose was added. Stimulation by NH4+ and glutamine at steps beyond pyruvate dehydrogenase was ruled out by the observation that NH4+ caused no stimulation from added pyruvate. NH4+ and glutamine did not alter the pentose phosphate pathway as determined by 14CO2 production from [1-14C]- or [6-14C]glucose. Ammonium ion and glutamine increased glucose consumption and increased lactate and pyruvate accumulation. The increased glycolysis in HTC cells appears to be the explanation for the stimulation of fatty acid synthesis by NH4+ and glutamine, even though glycolysis is much more rapid than fatty acid synthesis in these cells. The following observations support this conclusion. First, the percentage increase in glycolysis caused by NH4+ or glutamine is closely matched by the percentage increase in fatty acid synthesis. Second, the malate-aspartate shuttle, the pentose phosphate pathway, and the steps past pyruvate are not limiting in the absence of NH4+ or glutamine.  相似文献   

2.
Nuclei from hepatoma tissue culture (HTC) cells were isolated by standard methods and incubated in media commonly used for nuclease digestions (DNAase I and micrococcal nuclease) and for in vitro RNA synthesis. During the incubation, histones can be deacetylated from both control cells and cells treated with 6 mM sodium butyrate to enhance the levels of histone acetylation. Deacetylation of histone is much more apparent in nuclei isolated from sodium butyrate-treated cells. Inclusion of 6 mM sodium butyrate in the incubation medium effectively inhibits the endogenous deacetylase activity acting on histones H3 and H4, whereas sodium acetate at the same concentration has very little inhibitory effect.  相似文献   

3.
The secretory glycoproteins synthesized by hepatoma tissue culture (HTC) cells were resolved by two-dimensional polyacrylamide gel electrophoresis of media from cells that were grown in the presence of [(3)H]fucose. These cells synthesize and secrete a complex set of fucose-containing glycoproteins. These secretory glycoproteins are distinct from those glycoproteins present in the plasma membrane of HTC cells. Incubation of HTC cells with dexamethasone has a pronounced effect on the quality and quantity (denoted here as the program) of secretory protein synthesis, as assayed by the short-term incorporation of labeled mannose, fucose, or methionine. The synthesis of two mannose- and fucose- containing glycoprotein series, one of 50,000 mol wt and a more heterogeneous series with mol wt of 35,000-50,000, is increased to a high level by the hormone; conversely, the synthesis of other secretory proteins, particularly one with mol wt of 70,000, is decreased or stopped completely. The synthesis of some major secretory proteins is not affected by the hormone. Dexamethasone has less of an effect on the composition of either total cell membrane glycoprotein or plasma membrane glycoprotein. But there is a decrease in the synthesis of a major membrane glycoprotein series with mol wt of 140,000. These effects of dexamethasone are relatively specific to HTC cells. Neither Reuber H-35 cells nor primary cultures of rat hepatocytes show the same response to the steroid. Two variant HTC cell lines, which were selected for their resistance to dexamethasone inhibition of extracellular plasminogen activator activity, respond only partially to the steroid-induced regulation of the secretory and membrane glycoproteins.  相似文献   

4.
Nuclei from hepatoma tissue culture (HTC) cells were isolated by standard methods and incubated in media commonly used for nuclease digestions (DNAase I and micrococcal nuclease) and for in vitro RNA synthesis. During the incubation, histones can be deacetylated from both control cells and cells treated with 6 mM sodium butyrate to enhance the levels of histone acetylation. Deacetylation of histone is much more apparent in nuclei isolated from sodium butyrate-treated cells. Inclusion of 6 mM sodium butyrate in the incubation medium effectively inhibits the endogenous deacetylase activity acting on histones H3 and H4, whereas sodium acetate at the same concentration has very little inhibitory effect.  相似文献   

5.
Lipoprotein apolipoprotein synthesis by human hepatoma cells in culture   总被引:16,自引:0,他引:16  
Lipoprotein synthesis was demonstrated by double diffusion with low density lipoprotein antibody, and by 3H-labeled amino acid incorporation into proteins of the d less than 1.063 g/ml centrifugally isolated lipoprotein fraction. Radioactive label was incorporated predominantly into apolipoprotein B (60%), apolipoprotein A-I (20%) and apolipoprotein C (12%), as determined by Sepharose column chromatography and polyacrylamide gel electrophoresis. Incorporation of radioactive label into apolipoprotein B was inhibited by the presence of albumin in the medium, and was restored to control levels with the addition of 1 mM oleic acid, indicating that cell synthesis of apolipoproteins could be modified by culture conditions. The human hepatoma cell line, Hep G2, provides a potential in vitro model for the study of regulation of human hepatic lipoprotein and apolipoprotein synthesis.  相似文献   

6.
7.
8.
9.
Effects of glutamine on glutamine synthetase (GS) activity of hepatoma tissue culture (HTC) cells were studied with the aid of a specific goat anti-rat GS serum. Immunodiffusion and immunoelectrophoretic tests show that rat liver GS and HTC cell GS are immunologically similar but not identical. Immunotitrations of HTC cell extracts demonstrate that in cells incubated in high concentrations (5 mM) of glutamine, a cross-reacting form of GS with a decreased enzyme-specific activity accumulates. On prolonged incubation of cells in high glutamine, there is net degradation of GS to form immunologically inactive products. Radioimmunoprecipitation experiments show that glutamine acts by accelerating the degradation of preformed GS.  相似文献   

10.
11.
12.
The turnover of the plasma membrane proteins of hepatoma tissue culture cells was examined by three different methods--loss of polypeptides labeled in situ by lactoperoxidase-catalyzed iodination, loss of membrane polypeptides labeled with amino acid precursors, and loss from the membrane of fucose-labeled polypeptides. In both logarithmically growing and density-inhibited cells the proteins of the membrane are degraded with a half-life of about 100 hours. This is longer than the half-life of total cell protein, 50 to 60 hours, and longer than the doubling time of the cells, about 30 hours. Similar values for the rate of degradation of the membrane proteins were obtained by each of the three techniques. The same fucose-labeled polypeptides are present in the microsomal and the plasma membrane fractions of hepatoma tissue culture cells as analyzed by electrophoresis in dodecyl sulfate-acrylamide gels. But the fucose-labeled polypeptides were lost from the microsomal fraction at a faster rate than from the plasma membrane. Autoradiographic and double labeling techniques using 125I and 131I, or [3H]leucine and [14C]leucine were used to measure the relative rates of degradation of the proteins in the plasma membrane. All of the leucine-labeled polypeptides and the iodinated polypeptides had similar rates of degradation. These results support a model for the biogenesis of the plasma membrane in which the proteins are incorporated and removed in large structural units.  相似文献   

13.
Control of DNA synthesis in tissue culture cells   总被引:1,自引:0,他引:1  
Summary Eukaryotic DNA is functionally divided into thousands of replicons, each of which may be duplicated at a characteristic time within the DNA synthetic (S) period. Our approach toward an understanding of the molecular mechanisms which control orderly eukaryotic DNA synthesis has been: (a) to devise a method of cell synchrony in a suitable tissue culture system wherein all cells in the population enter and traverse the S period with a high degree of synchrony; (b) to determine, utilizing this system, precisely when during the S period critical events and macromolecular syntheses occur; and (c) to examine, by polyacrylamide-gel electrophoresis, the spectrum of proteins which become associated with chromatin during the S period in such a way as to suggest their involvement with DNA synthesis. Possible mechanisms for control are discussed based on the results presented here. Presented in the formal symposium on Mechanisms of Cellular Control at the 28th Annual Meeting of the Tissue Culture Association, New Orleans, Louisiana, June 6–9, 1977. The work reported in this communication was supported by NCI Grant CA 18612 to A.B.P.  相似文献   

14.
In certain lines of hepatoma tissue culture (HTC) cells, glutamine synthetase (EC 6.3.1.2) specific activity is increased 2.5- to 3-fold by the addition of glucocorticoids to the growth media. Actinomycin D blocks both the induction and deinduction of glutamine synthetase by glucocorticoids, suggesting a requirement of RNA synthesis for both processes. Using an antiserum raised against purified rat liver glutamine synthetase, we have precipitated radiolabeled glutamine synthetase from HTC cells. Electrophoresis of the immunoprecipitates on sodium didecyl sulfate-acrylamide gels isolates the subunit of glutamine synthetase and permits the radioactivity in the glutamine synthetase band to be quantitated. Using this technique, we have investigated the effect of dexamethasone, a synthetic glucocorticoid, on the rates of synthesis and degradation of glutamine synthetase. Dexamethasone (10(-7) M) increases the rate of synthesis of glutamine synthetase 2- to 3-fold but has no effect on the rate of glutamine synthetase degradation. The rates of total cell protein synthesis and degradation are not significantly affected by dexamethasone. The presence of actinomycin D at the time of removal of dexamethasone from induced cells prevents the fall in the induced rate of synthesis of glutamine synthetase normally seen when the inhibitor is removed from the culture medium. The regulation of glutamine synthetase by dexamethasone has been compared to the regulation of another dexamethasone-inducible enzyme in HTC cells, tyrosine aminotransferase, and been found to be similar in all parameters studied.  相似文献   

15.
16.
Upon removal of the nucleus from rat hepatoma tissue culture cells, levels of the enzyme tyrosine aminotransferase no longer change in response to withdrawal of glucocorticoids. The rate of tyrosine aminotransferase degradation is drastically reduced in rat hepatoma tissue culture cytoplasts leading to stabilization of pre-existing levels of tyrosine aminotransferase. Moreover, the rate of synthesis of the enzyme in cytoplasts is very low near that observed in uninduced whole cells. These effects of enucleation occur very rapidly and appear to be specific for tyrosine aminotransferase and a small number of other unstable hepatoma proteins. A nuclear effect is thus directly involved in the control of tyrosine aminotransferase degradation and synthesis.  相似文献   

17.
In order to get a deeper understanding of the relationship between nucleolus structure and its function, the dynamic change and derivation of FC (fibrillar center) and DFC (dense fibrillar component) through interphase were investigated in HeLa cells synchronized at the ultrastructural level. The results showed that there was a process of FC and DFC derivation in the nucleolus of HeLa cells during interphase. In G1 phase there were a few big FCs in the nucleolus of the HeLa cell. In S phase DFC around the FC got thickened and the configuration of the DFC changed. A lot of tiny FCs were derived from parts of the thickened DFC. We called the FC and DFC formed in G1 phase as primary FC (pri-FC) and primary DFC (pri-DFC) and the FC and DFC derived from the thickened pri-DFC as secondary FC (sec-FC) and secondary DFC (sec-DFC). In G2 phase sec-FC and sec-DFC were gradually separated from pri-DFC and scattered evenly in the nucleolus. Few large pri-FCs coexisted with numerous tiny sec-FCs in the nucleolus of HeLa cells in G2 phase. Based on the results of our observation, we suggest here a model of the dynamic change and the process of derivation of FC and DFC through interphase.  相似文献   

18.
19.
Control of amino Acid synthesis in tissue culture cells   总被引:3,自引:3,他引:0       下载免费PDF全文
Low concentrations of cycloheximide added to rose suspension culture cells stopped protein synthesis and drastically reduced the incorporation of 14C into arginine, lysine, isoleucine, threonine, and valine.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号