首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— Rapid axonal transport of proteins in retinal ganglion cells of the rabbit was studied following intraocular injection of labelled amino acids. It was found that rapidly transported material could be completely solubilized by sequential extraction with (a) isotonic buffer, (b) hypotonic buffer, (c) non-ionic detergents (major part), (d) deoxycholate and (e) sodium dodecyl sulphate. All these fractions contained a major labelled macromolecular peak with a mol.wt. of 70,000–95,000 as determined by gel filtration in SDS. The molecular weight of this labelled peak seemed to be inconsistent with previous estimations based upon electrophoresis in sodium dodecyl sulphate.  相似文献   

2.
35S-cysteine injected adjacent to the supraoptic nucleus (SON) of the rat is rapidly incorporated into proteins. These 35S-cysteine-labeled proteins in the SON (1-24 h after injection) were separated by polyacrylamide gel electrophoresis, and the distribution of radioactive proteins on the gels was analyzed. 1 h after injection, about 73% of the radioactivity appeared in two peaks (both about 20,000 mol wt). With time, these peaks (putative precursors of neurophysin) decreased, as a 12,000 mol wt peak (containing two distinct neurophysins) increased in radioactivity. Both the 20,000- and 12,000-mol wt proteins are transported into the axonal (median eminence) and nerve terminal (posterior pituitary) regions of the rat hypothalamo-neurohypophysial system. Conversion of the larger precursor protein to the smaller neurophysin appears to occur, in large part, intra-axonally during axonal transport. Six distinct 35S-cysteine-labeled peptides (less than 2500 mol wt), in addition to arginine vasopressin and oxytocin, are also synthesized in the SON and transported to the posterior pituitary where they are released together with labeled neurophysin by potassium depolarization in the presence of extracellular calcium. These data provide support for the hypothesis that the neurohypophysial peptides (vasopressin and oxytocin) and neurophysins are derived from the post- translational clevage of protein precursors synthesized in the SON, and that the conversion process can occur in the neurosecretory granule during axonal transport.  相似文献   

3.
After intraocular injections of [3H]leucine, six regions of the visual pathway of adult rabbit were used to study the spatio-temporal pattern of the slow anterograde axonal transport of radioactive proteins associated with the particulate fraction, the water-soluble fraction and the myelin fraction. Unlike other fractions, myelin-associated labelled proteins represented a time-constant (for a given region) percentage of total tissue radioactivity. This percentage increased from the first half to the second half of the optic nerve and remained high in the chiasma and tract. The peak specific radioactivity of myelin decreased in the same direction. Myelin proteins were separated by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis and the labelling patterns obtained in different regions and at different survival times were compared. At the peak of myelin radioactivity of a given region the label was typically associated with four protein bands, L1, L2, L3 and L4, of 40000, 44000, 62000, and 68000 mol.wts. respectively. The basic protein, the proteolipid protein and the W1 component (mol.wt. 51000-53000) of the Wolfgram proteins were not significantly labelled. The radioactivity associated with the W2 component (mol.wt 60000) of the Wolfgram proteins could be derived from the closely migrating L3 component. At shorter survival times no clear labelling pattern could be detected. At longer survival times radioactivity was almost totally localized around band L3. The results presented underline the importance of choosing appropriate experimental conditions to obtain a consistent labelling pattern of myelin-associated proteins and to investigate the possible mechanism responsible for this phenomenon.  相似文献   

4.
TRANSPORT AND TURNOVER OF NEUROHYPOPHYSIAL PROTEINS OF THE RAT   总被引:2,自引:0,他引:2  
Axonal transport and turnover rate of proteins in the supraoptico-neurohypo-physial tract were studied after injection of 35S cysteine into the region of the supraoptic nucleus. The proximo-distal migration of labelled proteins from the nerve cell bodies to the axon terminals in the neurohypophysis was followed by measuring the radioactivity of neurohypophysial proteins at various time intervals (4 h to 30 days) after isotope injection. A rapidly transported phase of proteins with a minimal transport rate of approximately 60 mm/day was demonstrated. An accumulation of protein-bound radioactivity was also observed in the neural lobe at 9 days after isotope injection, representing slowly transported proteins (0-5 mm/day). In addition, an intermediate phase of axonal transport (1-5 mm/day) was found. Fractionation of neurohypophysial proteins by polyacrylamide gel disc electrophoresis revealed that a predominating portion of the radioactivity was recovered in a single protein component (fraction A) at 4 h as well as at 30 days after isotope injection. This protein component was shown to be a constituent both of the rapid and the slow phase of axonal transport. With time an increasing amount of radioactivity was found in another protein component (fraction B), which reached a maximum at 14 days after injection and then remained fairly constant up to 30 days. When the turnover rates of neurohypophysial proteins were estimated, a half-life of 1-2 days and 8 days was calculated for the rapidly and slowly transported proteins, respectively.  相似文献   

5.
Following injection of [35S]cysteine into the region of the supraoptic nucleus male rats were subjected to haemorrhage and the radioactivity of the supraoptic nucleus and neurohypophysial proteins was measured at various time intervals after injection. Following haemorrhage the incorporation of [35S]cysteine into supraoptic nucleus proteins increased. Evidence was obtained for a lag period of 1 to 2 h for the supraoptic nucleus proteins to become available for axonal transport. As judged from the time of arrival of labelled material in the neurohypophysis, haemorrhage did not change the rapid rate of axonal transport (190 mm/day). At 15 min following bleeding, the radioactivity in fraction A (a neurophysin) of the neurohypophysis was reduced, which indicated a release of this rapidly transported protein. During the following 15 min an increase in the protein-bound radioactivity of the neural lobe occurred which exceeded that in controls. This is taken as evidence for increased axonal transport in response to haemorrhage.  相似文献   

6.
Abstract— An analysis of proteins undergoing axonal transport in nigro-striatal neurons, after the stereotaxic injection of [3H]leucine into the substantia nigra of rat brain was performed. As early as 6 h after the injection [3H]proteins appeared in the caudate-putamen. The maximum accumulation was at 5 days and there was still residual protein radioactivity present at 30 days. About 70 per cent of the total radioactive protein in the caudate-putamen was solubilized by homogenization in 0–5%, (v/v) Triton X-100 and remained in the supernatant on centrifuging for 1 h at 100,000 g. The supernatant fraction, when chroma-tographed on a DEAE-cellulose column, was resolved into four protein peaks (A, B. C and D) which were found to be labelled differently as a function of time after the injection of [3H]leucine. Peak A was substantially labelled in a first phase (6–24 h) and reached its maximum in a second phase (5 days). The proteins comprising this peak appeared to undergo both fast and slow axonal transport. Although some labelling in peak B was evident at 6 h, maximal activity did not occur until 5 days. No radioactivity could be detected in peaks C and D at 6 h. Maximal labelling of these two peaks also occurred at 5 days. These data suggest that the proteins of peaks B, C and D were transported primarily by slow axoplasmic flow. The radioactive protein peaks A and B from the second phase of the transport were excluded from a Sephadex G-200 column, pointing to their high molecular weights (13,000–200,000). Peak B. which had the highest specific radioactivity (c.p.m./mg protein) at 5 days, contained a significant level of tyrosine hydroxylase, an important component of dopaminergic neurons.  相似文献   

7.
—The presence of rapidly transported axonal proteins in purified preparations of myelin has been investigated in the goldfish visual system. Fish were injected intraocularly with 3H proline and contralateral optic tecta were pooled 8–12 h later for purification of myelin. Three purification procedures were employed using continuous and discontinuous gradients of sucrose and continuous gradients of CsCl. All of the myelin preparations were found to have physical, chemical and enzymatic properties attributable to relatively pure preparations of myelin. The goldfish myelin differed from mammalian preparations in having a slightly lower density and in containing an additional major protein of approx. 45,000 mol. wt. All of the myelin preparations retained relatively high levels of axonally transported radioactivity with specific radioactivities which ranged from 70 to 80 per cent of that of the whole tectal homogenate. Acrylamide gel analysis showed the myelin-associated radioactivity to be confined to the higher molecular weight proteins with very little radioactivity associated with basic protein or proteolipid protein. Both the axonally transported radioactivity and the group of higher molecular weight proteins were found to be more concentrated in a myelin subfraction of relatively high density than in a subfraction of low density. The possible significance of the association of axonally transported proteins with myelin is discussed.  相似文献   

8.
Following an intraocular injection of myo-[2-3H]inositol, the axonal transport of labelled water-soluble substances and inositol phospholipids was investigated. Evidence was obtained for a rapid axonal transport of a relatively small amount of labelled inositol phospholipids. In contrast to other axonally transported phospholipids, there was no significant accumulation of labelled, rapidly transported inositol phospholipids in the nerve terminal region at later time intervals following the isotope administration.  相似文献   

9.
Subcellular site of lectin synthesis in developing rice embryos   总被引:1,自引:0,他引:1       下载免费PDF全文
Embryos of developing rice (Oryza sativa L. cv. Koshihikari) caryopses which actively synthesize lectin were labelled with [35S]cysteine for different times and newly synthesized rice lectin was isolated by affinity chromatography. Gel filtration of embryo extracts on Sepharose-4B indicated that a large portion of the labelled lectin was associated with the particulate fraction. Experiments with detergent indicated that this lectin was sequestered within organelles. When extracts of pulse-labelled embryos were fractionated on isopycnic sucrose gradients, this detergent-released lectin banded in the same density-region as the endoplasmic reticulum (ER) marker enzyme NADH-cytochrome c reductase. Both radioactivity in rice lectin and the enzyme activity shifted towards a higher density in the presence of 2 mM Mg acetate, indicating that the labelled lectin was associated with the rough ER. The ER-bound lectin could be chased from this organelle when tissue was incubated in unlabelled cysteine following a 1 h pulse of labelled cysteine. Radioactivity chased out of the ER with a half-life of ˜4 h and accumulated in the soluble fraction. In the ER the lectin was present as a polypeptide with mol. wt. 23 000, while in the soluble fraction it occurred as polypeptides with mol. wt. 18 000, 10 000 and 8000. The rice lectin in the ER is capable of binding carbohydrates since it binds readily to the affinity gels. It is associated into dimers with an approximate mol. wt. of 46 000. The results show that newly synthesized rice lectin is transiently sequestered within the ER before further transport and processing take place.  相似文献   

10.
Changes in solubility and transport rate of cytoskeletal proteins during regeneration were studied in the motor fibers of the rat sciatic nerve. Nerves were injured by freezing at the midthigh level either 1-2 weeks before (experiment I) or 1 week after radioactive labeling of the spinal cord with L-[35S]methionine (experiment II). Labeled proteins in 6-mm consecutive segments of the nerve 2 weeks after labeling were analyzed following fractionation into soluble and insoluble populations with 1% Triton at 4 degrees C. When axonal transport of newly synthesized cytoskeleton was examined in the regenerating nerve in experiment I, a new faster component enriched in soluble tubulin and actin was observed that was not present in the control nerve. The rate of the slower main component containing most of the insoluble tubulin and actin together with neurofilament proteins was not affected. A smaller but significant peak of radioactivity enriched in soluble tubulin and actin was also detected ahead of the main peak when the response of the preexisting cytoskeleton was examined in experiment II. It is thus concluded that during regeneration changes in the organization take place in both the newly synthesized and the preexisting axonal cytoskeleton, resulting in a selective acceleration in rate of transport of soluble tubulin and actin.  相似文献   

11.
The constituent proteins of the fast (110–150 mm/day) and slow (1.5–2 mm/day) components of axonal transport in the retinal ganglion cells of the rabbit were investigated. The fast and slow components were labelled by intraocular injection of (3H)- and (14C)-leucine, respectively. Subcellular fractionation of the optic nerve and tract and subsequent gel electrophoresis of the fractions showed that most of the soluble proteins moved with the slow phase of axonal transport, whereas only some of the soluble proteins were transported with the rapid phase. Extraction of the microsomal fraction with triton X-100 resulted in the solubilization of highly labelled proteins belonging to the rapid phase. These proteins showed a relatively low electrophoretic mobility.  相似文献   

12.
Abstract— Proteins undergoing rapid axonal transport in the garfish olfactory nerve were examined by sodium dodecyl sulphate gel electrophoresis. The distribution of polypeptides and the extent of their labeling by transported molecules was determined in several nerve subfractions including: total particulate, total membrane, mitochondrial and two membrane subfractions rich in axolemma. The polypeptide composition of the various fractions was found to be relatively similar, with each showing a major protein with an estimated MW of 58,000. Specific differences in the concentrations of certain proteins were noted between fractions, including differences between the lower and higher density axolemma rich subfractions. Axonally transported radioactivity was predominantly localized among high molecular weight proteins, with all fractions, except mitochondrial pellet, displaying a major peak of radioactivity centered at 126,000-MW. Several major proteins including the 58,000-MW band were labeled by rapid transport to a much smaller extent. Certain labeled peaks were found to be concentrated in individual fractions, particularly a polypeptide (MW 35,000) more predominantly found in the lower density axolemma rich fraction.
Systemic labeling of the nerve is found to give a general distribution of radioactivity on gels, which is clearly different from the pattern obtained after axonal transport labeling.  相似文献   

13.
S T Brady  R J Lasek 《Cell》1981,23(2):515-523
The axonal transport of two soluble enzymes of intermediary metabolism was evaluated: the nerve-specific form of the glycolytic enzyme enolase (NSE) and the brain isozyme of creatine phosphokinase (CPK). Previously, little was known about the intracellular movements of the soluble proteins of the cell. Although the soluble enzymes of glycolysis and other pathways of intermediary metabolism have been thought to be freely diffusing in the cytosol, many are required in the axonal extremities of the neuron and must be transported to the sites of utilization. Comigration of purified enzymes with radioactive polypeptides associated with specific rate components of axonal transport in two-dimensional gel electrophoresis indicates that both NSE and CPK move in the axon solely as part of the group of proteins known as slow component b (SCb) at a rate of 2 mm/day. Peptide mapping following limited proteolysis confirmed identification of NSE and CPK in SCb. Materials associated with SCb have been shown to move coherently along the axon and to behave as a discrete cellular structure, the axoplasmic matrix. Association of two soluble enzymes, NSE and CPK, with the SCb complex of proteins requires a reevaluation of the assumption that these and other soluble proteins of the axon are freely diffusible.  相似文献   

14.
[35S]Methionine was stereotaxically injected into the dorsalateral geniculate body (DLGB) of adult male rats, and 1 h to 10 days post-injection the DLGB and projection site (striate cortex) were dissected out and solubilized in 1% sodium dodecyl sulfate. Samples were analyzed for acid-precipitable radioactivity, and radioactivity in different molecular weight classes was determined following discontinuous gel electrophoresis on both tube and slab gels. Acid-precipitable radioactivity in the DLGB peaked by 4 h and then declined over the time period studied. The molecular weight distribution pattern was complex and did not change appreciably with time. Radioactivity in the striate cortex arrived in at least three waves: rapidly transported proteins arrived between 2 and 4 h; a second wave of transport began to arrive at about 7 h post-injection and there was a slight rise in specific activity for 2 days; finally, at 3 days post-injection, there was a steep increase with the arrival of the bulk of the transported material. The electrophoretic distribution pattern of proteins arriving in the first wave included 40–50 identifiable bands ranging in molecular weight from 13,000 to 200,000. Of particular interest was a radioactive band of apparent molecular weight of 110,000, which was prominent at 4 h, but by 12 h showed very little labeling. The second wave of radioactivity contained primarily proteins of molecular weight classes already present, although there were quantitative differences. Several proteins in the molecular weight range of 43,000 to 78,000 were identifiable as characteristic of the third wave of transported material. Results from a study following injection of a hippocampus were similar: the electrophoretic distribution pattern of radioactive proteins extracted from the injected hippocampus resembled that of the DLGB, and also did not vary appreciably with time, while radioactive proteins in the contralateral hippocampus had an electrophoretic distribution pattern similar to that of the striate cortex and changed with time in a similar manner.  相似文献   

15.
The axonal transport of labelled proteins was studied in the optic system of adult rabbits after an intraocular injection of [3H]Ieucine. It was demonstrated that the precursor was incorporated into protein, which was transported along the axons of the retinal ganglion cells. Intraocularly injected puromycin inhibited protein synthesis in the retina and markedly inhibited the appearance of labelled protein in the optic nerve and tract. It was further demonstrated by intracisternal injection of [3H]leucine that an intraocular injection of puromycin did not affect the local protein synthesis in the optic nerve and tract. Cell fractionation studies of the optic nerve and tract showed that the rapidly migrating component, previously described as moving at an average rate of 110-150 mm/day, was largely associated with the microsomal fraction. About 40 per cent of the total protein-bound radioactivity in this component was found in the microsomal fraction and about 15 per cent was recovered in the soluble protein fraction. Most of the labelled material moving at a rate of 1-5-2 mm/day was soluble protein. The specific radioactivity of this component was about ten times greater than that of the fast one. In the slow component about 50 per cent of the radioactivity was found in the soluble protein fraction and about 10 per cent of the radioactivity was recovered in the microsomal fraction. Radioautography demonstrated incorporated label in the neuropil structures in the lateral geniculate body as early as 4-8 hr after intraocular injection. The labelling of the neuropil increased markedly during the first week, and could be observed after 3 weeks.  相似文献   

16.
1. Twenty-four hours after the administration of Cd2+ (11 mumol/kg body weight) to rats, the kidneys were removed and the RNA was extracted from the polysomes and used to prepare poly(A) RNA. 2. The poly(A)+ RNA was translated in rabbit reticulocyte lysates containing different labelled amino acids as precursors and the resultant proteins were separated by polyacrylamide gel electrophoresis. 3. The labelling of the proteins was similar using poly(A)+ RNA obtained from control and Cd2+ treated rats except for two proteins. 4. Regardless of labelled precursor used, proteins of mobility in sodium dodecylsulphate electrophoresis of mol. wt 50,000 contained approx twice as much radioactivity using the RNA from the kidney of treated rats. 5. Using labelled leucine, lysine, and cysteine, but not labelled phenylalanine or histidine, proteins of mobility in sodium dodecylsulphate electrophoresis of mol. wt 10,000 contained approx twice as much radioactivity using the RNA from the kidney of the Cd2+ treated rats. These results and the results following carboxymethylation of the proteins prior to electrophoresis, together with the results from co-electrophoresis of the products [125-I]-labelled liver metallothionein support the view that the poly(A)+ RNA contains kidney mRNA for metallothionein.  相似文献   

17.
SYNTHESIS, MIGRATION AND TURNOVER OF PROTEIN IN RETINAL GANGLION CELLS   总被引:21,自引:7,他引:14  
Abstract— The synthesis, migration and turnover of proteins in retinal ganglion cells of the adult rabbit was studied after intraocular injections of [3H]leucine. It was shown that the isotope was rapidly incorporated into proteins of the retina and some of the proteins were subsequently transported out into the axons of the retinal ganglion cells down to the terminals. This intra-axonal transport of protein occurred at four different velocities; 150, 40, 6-12 and 2 mm/day respectively. The two most rapidly migrating phases of axonal transport were predominantly associated with light particulate fractions and had a relatively rapid turnover in the nerve terminals in the lateral geniculate body. The third phase of axonal transport which had a rate of 6-12 mm/day was possibly associated with the migration of mitochondria. The most slowly migrating proteins in the axon which moved at an average rate of 2 mm/day carried predominantly soluble proteins down to the nerve terminals. A minor part of this phase was metabolized locally in the axon with a half-life of about 14 days. When this slowly migrating phase had reached the nerve terminals in the lateral geniculate body, it was degraded with a half-life of 9-6 days. The different phases of axonal transport were of different magnitudes. As measured from the maximal amount of radioactivity present in the nerve terminals the relative amounts of radioactivity of the four phases were: 1,1 -8,1 -5 and 8-5.  相似文献   

18.
The lymphoid leukaemia L 1210 cells of mice were labelled with 125I. The cell homogenates were fractionated and from the microsomal fraction 90 per cent of the radioactive material could be precipitated with perchloric acid, whereas only 4 per cent was precipitated from the soluble fraction. Papain bound with Enzacryl AH released 31 per cent of radioactivity. It was concluded therefrom that the surface proteins of the cells were labelled. Electrophoretic separation of these proteins in polyacrylamide gel with sodium dodecyl sulphate was performed and 6--8 radioactive fractions of surface peptides were found.  相似文献   

19.
Labelled axonally transported proteins belonging to four different phases of transport in the retinal ganglion cells of the rabbit were used as substrates in order to study proteolytic degradation in axons and nerve terminals.Proteins of both rapidly and slowly transported phases of axonal transport were easily degraded in small intact pieces of the superior colliculus.Addition of the Ca-dependent neutral protease, calpain, to isolated soluble and membrane fractions from the superior colliculus resulted in an increased rate of degradation of axonally transported components. The effects of calpain was most marked toward components in phases II and V of axonal transport in this system (Karlsson and Sjöstrand, 1971; Willard and Hulebak, 1977). The latter phase contains slowly transported neurofilament and microtubular protein while the former one contains rapidly transported membrane proteins.  相似文献   

20.
The injection of [2,3-3H]N-succinimidyl propionate ([3H]N-SP) into the rat sciatic nerve was used to covalently label both intra- and extra- axonal proteins. While extra-axonal proteins (e.g., myelin proteins) remained in the injection site, the intra-axonal proteins were transported in both the anterograde and retrograde directions. The mobile labeled proteins appeared to move by normal axonal transport processes because: (a) autoradiographic studies showed that they were localized exclusively within the axon at considerable distances from the injection site, (b) specific and identifiable proteins (by SDS gel electrophoresis) moved at expected rates in the anterograde direction, and (c) an entirely different profile of proteins moved in the anterograde vs. retrograde direction. This novel experimental approach to axonal transport, which is independent of de novo protein synthesis, provided a unique view of slow anterograde transport, and particularly of retrograde transport of endogenous proteins. A large quantity of a 68,000 mol wt proteins, moving at approximately 3-6 mm/day, dominated the retograde transport profile. [3H]N-SP, therefore, represents a new and unique "vital stain" which may find many applications in cell biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号