首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Neuronal differentiation triggered by blocking cell proliferation.   总被引:11,自引:0,他引:11  
Treatment of the neuroblastoma cell line SHSY5Y with nerve growth factor (NGF) resulted in limited neurite extension, but proliferation continued. However, SHSY5Y cells treated with NGF and a pulse of the DNA polymerase alpha and delta inhibitor aphidicolin showed dramatic neuronal differentiation. Few differentiated cells were observed immediately following the NGF-aphidicolin treatment; however, continued treatment of the cells with NGF in the ensuing week resulted in extension of long neurites (> 400 microns). Neurite extension was not observed for cells treated with aphidicolin alone. Hence, aphidicolin and NGF act synergistically to induce differentiation of SHSY5Y cells. If maintained in NGF, the differentiated cells were stable for at least 1 month and displayed many neuronal characteristics. They were mitotically inactive, and, in contrast to control or NGF-treated cells, the differentiated cells required NGF for survival. The cells expressed multiple microtubule-associated proteins (MAP), including MAP 1A, MAP 1B, and tau. There was expression of synaptic vesicle antigens synaptophysin and SV2, but not synapsin Ia/b or synapsin IIa/b. Both hydroxyurea and thymidine, which inhibit synthesis of nucleotides, act synergistically with NGF to induce differentiation of SHSY5Y cells. Since aphidicolin, hydroxyurea, and thymidine are chemically unrelated, we conclude that these drugs enhance NGF-induced differentiation by blocking cell proliferation and not through an unrelated side effect. The model suggested by these studies is that differentiation is triggered by two simultaneous signals: NGF and cessation of cell proliferation.  相似文献   

2.
Aphidicolin, a specific and reversible inhibitor of DNA polymerase alpha, was examined as a potential tool to evaluate the relationship between proliferative and differentiative events in Friend erythroleukemia cell (FELC) maturation. Since FELC can be induced to differentiate along the erythrocytic pathway with a variety of inducing agents, the effects of aphidicolin were tested on proliferating FELC and cells which were induced to differentiate with the potent inducer, hexamethylene bisacetamide (HMBA). Exposure of FELC to aphidicolin resulted in unbalanced growth within 24 h, as reflected by abnormally large cells, compared with untreated cells. In the presence of 10 or 50 microM aphidicolin, 75-90% of cells became differentiated (benzidine+ cells) within 48 h, although by 72 h cells treated with aphidicolin were non-viable as determined by trypan blue staining. A wider range of aphidicolin concentrations was tested in an effort to determine the optimal concentration of aphidicolin that maximally induced differentiation with minimal loss of cell viability. Continuous exposure of FELC from 24-96 h with doses of aphidicolin ranging from 0.5 to 50 microM was more effective for differentiation induction than was short-term exposure (1, 2, 4, 12 h) to the drug, although 1 h of exposure significantly (p less than 0.01) increased differentiation (28.1 +/- 7.8%) compared with untreated cells (2.7 +/- 1.0%). When cells were treated with HMBA (5 mM) and aphidicolin (1, 5, 10 microM), in combination, aphidicolin shifted the time of onset of differentiation from 72 to 48 h, but did not act synergistically or additively with HMBA; nor was the induction effect of aphidicolin changed by HMBA. In contrast, suboptimal doses of aphidicolin (0.5 microM) in combination with HMBA (2.5 mM) produced an additive effect on FELC differentiation. In addition, [3H]thymidine experiments demonstrated that aphidicolin reversibly blocked FELC in S phase and at G1-S interface of the cell cycle. These results indicate that aphidicolin can induce the differentiation of FELC, and that a complete round of replicative DNA synthesis is not required for differentiation to occur.  相似文献   

3.
Polyploid plants often have altered gene expression, biochemistry, and metabolism compared to their diploid predecessors. Therefore cultured diploid cells have distinct benefits over cultured polyploid cells for the study of gene regulation and metabolism of the parent plant. Here we report methods for establishing and maintaining a rapidly dividing diploid Arabidopsis thaliana cell suspension culture, and subsequent cell cycle synchronisation. Rapid growth of homogeneous cell populations was achieved after 3 months of initiation of cultures from leaf calluses. The cells were grown in the dark on an orbital shaker (110 rpm, 50 mm orbit) at 24 °C. Continued maintenance of the culture required the use of late-exponential stage cells for subculture at weekly intervals using careful subculturing techniques to achieve accurate biomass transfer. Cell cycle synchronisation was achieved following sucrose starvation, phosphate starvation, hydroxyurea treatment, aphidicolin treatment, and a combination of phosphate starvation and aphidicolin treatment. Inhibition of the cell cycle and accumulation of cells in specific phases was monitored by microscopy to determine the metaphase/anaphase index, and by flow cytometry. The cell cycle was partially and reversibly blocked by sucrose or phosphate starvation and by hydroxyurea (2.5 mM) treatment. A complete block at G1/S interphase was achieved after aphidicolin treatment or phosphate starvation combined with aphidicolin treatment. Release from the aphidicolin block achieved ca. 78% cell cycle synchronisation in the cell population. Endoreduplication was evident after release from the block in all treatments but after one cycle (24 h) the cells returned to the diploid state. This diploid culture is currently being used in our laboratory for the genetic analysis of cell death.  相似文献   

4.
The c-sis oncogene encoding the B-chain of platelet-derived growth factor (PDGF) may be involved in an autocrine growth stimulation of tumours expressing the PDGF receptor, such as glioblastomas and sarcomas. To investigate whether expression of c-sis RNA is regulated in a cell cycle dependent manner, human A172 glioblastoma cells were synchronized by either centrifugal elutriation or chemical blockage with the DNA synthesis inhibitors hydroxyurea or aphidicolin. In non-perturbed elutriated cells, c-sis RNA levels were lower in the S phase of the cell cycle than in the G1 phase. In contrast, the chemically synchronized cells revealed a transient rise in c-sis RNA shortly after drug release, in early S phase. The RNA changes occurring after release from drug inhibition represent cell recovery from drug induced metabolic disturbances rather than true cell cycle dependent effects.  相似文献   

5.
M H Fox  R A Read  J S Bedford 《Cytometry》1987,8(3):315-320
Synchronized cell populations are necessary to study many aspects of cell biology. We have developed a method to obtain highly synchronized Chinese hamster ovary cell populations in S phase or G2 phase by utilizing mitotic selection followed by incubation with either hydroxyurea, aphidicolin, or methotrexate for 12 h. Flow cytometry analysis shows that the coefficient of variation in the spread of the cell population in S phase is as low as 6%. Drug toxicity studies compare the effects of the various drugs on G1 and S phase cells. The use of aphidicolin or hydroxyurea results in the most highly synchronized cell populations, but methotrexate yields inadequate synchronization. These results demonstrate that both aphidicolin and hydroxyurea are useful drugs for obtaining highly synchronized cell populations after an initial synchrony in mitosis. Aphidicolin is perhaps the best choice because of less toxicity to S phase cells when used in low concentrations.  相似文献   

6.
Abstract. The c-sis oncogene encoding the B-chain of platelet-derived growth factor (PDGF) may be involved in an autocrine growth stimulation of tumours expressing the PDGF receptor, such as glioblastomas and sarcomas. To investigate whether expression of c-sis RNA is regulated in a cell cycle dependent manner, human A172 glioblastoma cells were synchronized by either centrifugal elutriation or chemical blockage with the DNA synthesis inhibitors hydroxyurea or aphidicolin. In non-perturbed elutriated cells, c-sis RNA levels were lower in the S phase of the cell cycle than in the G1 phase. In contrast, the chemically synchronized cells revealed a transient rise in c-sis RNA shortly after drug release, in early S phase. The RNA changes occurring after release from drug inhibition represent cell recovery from drug induced metabolic disturbances rather than true cell cycle dependent effects.  相似文献   

7.
Treatment of HeLa cells with aphidicolin at 5 or 0.5 μg/ml induced cell cycle arrest at G1/S or G2/M phase, respectively, and was accompanied by unbalanced cell growth. Long-term administration of aphidicolin (more than 48 h) resulted in noticeable loss of reproductive capacity though cells were viable at the time of treatment. Immunofluorescence with anti-Golgi membrane protein monoclonal antibody (mAbG3A5) showed disfigurement of the characteristic mesh-like configuration when cells were treated for more than 48 h. Interestingly, we found that the fragmented Golgi complex formed a ring around the nucleus in more than 20% of the cells. Immunoelectron microscopy using mAbG3A5 antibody demonstrated that the stack structure of the fragmented Golgi complex in aphidicolin-arrested cells appeared partially broken up and seemed to have converted to a vesicle-like structure. Analysis using an antibody to tubulin and anticentrosome human autoimmune serum showed that alterations in the Golgi complex were induced even by the lower 0.5 μg/ml dose. These alterations were accompanied by both changes in the distribution of microtubules and an increase in the number of centrosomes. These cells lost their distinct perinuclear microtubule organiz-ing center (MTOC). On the other hand, treatment with aphidicolin at 5 μg/ml did not induce multiplication of the centrosome although the loss of distinct MTOC was still evident. No changes took place in the Golgi complex, microtubule, or centrosome of cells treated with 0.5 μg/ml aphidicolin when cycloheximide was added simultaneously to the culture. J. Cell. Physiol. 176:602–611, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

8.
Treatment with sodium arsenite during the G2 phase potentiated the chromatid breaks and chromatid exchanges induced by ultraviolet light or 4-nitroquinoline 1-oxide but not those induced by methyl methanesulfonate, ethyl methanesulfonate, mitomycin C or cisplatin in Chinese hamster ovary cells. A comparison was made between the effects of treatment during G2 with sodium arsenite, cytosine-β- -arabinofuranoside, aphidicolin, hydroxyurea, caffeine, 3-aminobenzamide and novobiocin on the frequency of chromosomal aberrations induced by the above-mentioned S-dependent clastogens. It was found that the effects varied considerably, both quantitatively and qlalitatively. However, potentiation was more often observed in the chromosomal aberrations induced by ultraviolet light and 4-nitroquinoline 1-oxide than by other S-dependent clastogens, and the frequency of chromatid exchanges was potentiated only in cells pretreated with ultraviolet light or 4-nitroquinoline 1-oxide. Furthermore, for all of the S-dependent clastogens studied, treatment with cytosine-β- -arabinofuranoside during the G2 phase potentiated the frequency of chromatid breaks but not the frequency of chromatid exchanges.  相似文献   

9.
The nuclear enzyme DNA topoisomerase II catalyzes the breakage and resealing of duplex DNA and plays an important role in several genetic processes. It also mediates the DNA cleavage activity and cytotoxicity of clinically important anticancer agents such as etoposide. We have examined the activity of topoisomerase II during the first cell cycle of quiescent BALB/c 3T3 cells following serum stimulation. Etoposide-mediated DNA break frequency in vivo was used as a parameter of topoisomerase II activity, and enzyme content was assayed by immunoblotting. Density-arrested A31 cells exhibited a much lower sensitivity to the effects of etoposide than did actively proliferating cells. Upon serum stimulation of the quiescent cells, however, there was a marked increase in drug sensitivity which began during S phase and reached its peak just before mitosis. Maximal drug sensitivity during this period was 2.5 times greater than that of log-phase cells. This increase in drug sensitivity was associated with an increase in intracellular topoisomerase II content as determined by immunoblotting. The induction of topoisomerase II-mediated drug sensitivity was aborted within 1 h of exposure of cells to the protein synthesis inhibitor cycloheximide, but the DNA synthesis inhibitor aphidicolin had no effect. In contrast to the sensitivity of cells to drug-induced DNA cleavage, maximal cytotoxicity occurred during S phase. A 3-h exposure to cycloheximide before etoposide treatment resulted in nearly complete loss of cytotoxicity. Our findings indicate that topoisomerase II activity fluctuates with cell cycle progression, with peak activity occurring during the G2 phase. This increase in topoisomerase II is protein synthesis dependent and may reflect a high rate of enzyme turnover. The dissociation between maximal drug-induced DNA cleavage and cytotoxicity indicates that the topoisomerase-mediated DNA breaks may be necessary but are not sufficient for cytotoxicity and that the other factors which are particularly expressed during S phase may be important as well.  相似文献   

10.
When grown in the absence of methotrexate, cells carrying unstably amplified dihydrofolate reductase ( dhfr ) genes have a growth disadvantage that is a function of their level of gene amplification. Although this growth disadvantage is thought to drive the loss of unstably amplified dhfr genes in the absence of methotrexate, its mechanism is not understood. The present studies of murine cell lines with different levels of dhfr gene amplification demonstrate that such cells experience increased unbalanced growth (excess RNA and protein content relative to DNA content) with increased levels of dhfr gene amplification. Stathmokinetic analysis of a cell line with unstably amplified dhfr genes showed that the unbalanced growth was associated with a very low rate of G1/S transit, which suggests that amplified DNA sequences may activate a cell cycle checkpoint at the G1/S boundary. Hydroxyurea, which is known to induce rapid elimination of amplified genes at sub-cytotoxic concentrations, also inhibits the cell cycle at the G1/S transition and causes unbalanced growth. Earlier work has shown that hydroxyurea selectively targets those cells within the heterogeneous drug resistant cell populations which have the highest amplified gene dosage. The finding that unstable gene amplification and hydroxyurea have similar effects on the cell suggests that hydroxyurea may achieve this selective targeting by pushing those cells with the highest levels of gene amplification over a critical stress threshold to cause growth arrest or cell death.  相似文献   

11.
The duration of the cell cycle in synchronous cultures of HeLa S3 cells that were either irradiated with 3.5 Gy of 220-kV X rays in mid-S phase or treated in early G1 or mid-S phase for several hours with 1 or 3 microM aphidicolin, or were subjected to both treatments, was measured by time-lapse cinemicrography. When compared with the generation time of untreated cells, the delay in cell progression with the combined treatment was found to be less than the sum of the delays with the individual treatments, but longer than the imposed delay caused by treatment with aphidicolin alone. Because recovery from potentially lethal radiation damage proceeds in the presence of aphidicolin, this finding suggests that a portion of the radiation-induced delay in cell progression may be associated with processes other than those that directly affect cell viability. It was also observed that the incidence of both spontaneous and radiation-induced sister-cell fusion is decreased in cultures incubated in the presence of aphidicolin.  相似文献   

12.
Agents that inhibit DNA synthesis increase the frequency of methotrexate resistance and gene amplification in cultured mammalian cells. Chinese hamster ovary cells blocked with hydroxyurea rereplicated dihydrofolate reductase gene sequences within a single cell cycle upon release from the block (Mariani, B.D., and Schimke, R.T. (1984) J. Biol. Chem. 259, 1901-1910). Perturbation of DNA synthesis was postulated to result in misfiring of replicon initiation, subsequent over-replication of DNA sequences, and amplification of specific genes. To test this hypothesis, we have exposed Chinese hamster ovary cells pulsed with bromodeoxyuridine to three agents that inhibit DNA synthesis and enhance gene amplification: UV irradiation, hydroxyurea, and aphidicolin. After release from the block, the progression of cells throughout the cell cycle was analyzed by flow cytometry through simultaneous measurement of total cellular DNA content and bromodeoxyuridine-labeled DNA. Although the cell cycle effects varied depending on the agent used for the block, in all cases a subset of cells that were in S phase at the time of the block exhibited DNA histograms with greater than 4C DNA content at various times after release and prior to cell division. Cells with the excess DNA were approximately 10-fold more resistant to methotrexate compared to treated cells with normal DNA content or untreated cells. Therefore, cells in S phase at the time of the block produce excess DNA per cell prior to division, and this over-replicated DNA may be relevant to gene amplification and drug resistance.  相似文献   

13.
Homologous recombination (HR) and nonhomologous end joining (NHEJ) play overlapping roles in repair of DNA double-strand breaks (DSBs) generated during the S phase of the cell cycle. Here, we characterized the involvement of HR and NHEJ in the rescue of DNA replication forks arrested or slowed by treatment of hamster cells with hydroxyurea or thymidine. We show that the arrest of replication with hydroxyurea generates DNA fragmentation as a consequence of the formation of DSBs at newly replicated DNA. Both HR and NHEJ protected cells from the lethal effects of hydroxyurea, and this agent also increased the frequency of recombination mediated by both homologous and nonhomologous exchanges. Thymidine induced a less stringent arrest of replication and did not generate detectable DSBs. HR alone rescued cells from the lethal effects of thymidine. Furthermore, thymidine increased the frequency of DNA exchange mediated solely by HR in the absence of detectable DSBs. Our data suggest that both NHEJ and HR are involved in repair of arrested replication forks that include a DSB, while HR alone is required for the repair of slowed replication forks in the absence of detectable DSBs.  相似文献   

14.
Human NHIK 3025 cells, synchronized by mitotic selection, were given 2 mM thymidine, which inhibited DNA synthesis without reducing the rate of protein accumulation. After removal of the thymidine the cells proceeded towards mitosis and cell division, with an S duration 2 hours shorter than, but a G2 and M duration nearly identical to that of the control cells. If cycloheximide (1.25 m?M) was present together with thymidine, no net protein accumulation took place during the treatment, and the subsequent duration of S, G2, and M was similar to that of the untreated cells. The shortening of S seen after treatment with thymidine alone would therefore indicate that the rate of DNA synthesis depended on the amount of some preaccumulated protein. The postreplicative period in thymidine-treated cells was lengthened by cycloheximide treatment although the protein content had already been doubled. This suggests that proteins required for the traverse of this part of the cell cycle might have to be synthesized after completion of DNA replication. Shortly after removal of thymidine, the rate of protein accumulation declined markedly, indicating the existence of some mechanism for negative control of cell mass. In addition, the daughters of thymidine-treated cells had their cell cycle shortened by 2 hours. As a result, the cells had returned to balanced growth already in the first cell cycle following the induction of unbalanced growth. In conclusion, our experiments suggest that NHIK 3025 cells might require a minimum time in order to traverse the cell cycle, which is independent of cell mass.  相似文献   

15.
Flow cytometry indicated that significant amounts of dsRNA were accumulated in HeLa S3 cells blocked at or near G1/S boundary by hydroxyurea (HU) or excess thymidine (TdR). The dsRNA/DNA ratio increased in these cells in a manner characteristic of unbalanced cell growth. In HU-treated cells, dsRNA content was maximal 16 hours after addition of the drug and did not change significantly during the next 24 hours. The DNA content in blocked cells increased by 10%. Cell viability assessed by colony formation in soft agar decreased exponentially in HU-treated cultures after 16 hours of incubation. Correlation between loss of cell viability and rate of cell proliferation after removal of HU was observed, as determined by cell count and analysis of cell cycle progression. In TdR-treated cultures cells slowly progressed into mid S-phase during 40 hours and dsRNA accumulation continued during this period. Cell viability was not significantly affected by treatment with excess TdR, indicating that unbalanced growth per se, as measured by dsRNA accumulation, is not lethal for the cells. After reversal of DNA synthesis inhibition by removal of the drug, cells treated with HU for 16 hours or TdR for 16–24 hours promptly progressed through the cell cycle. This progression was accompanied by accumulation of significant amounts of dsRNA. As a result, cells in G2 phase had a very high dsRNA content leading to retention of the unbalanced condition (increased dsRNA/DNA ratio) in the daughter cells. It is suggested that dsRNA accumulation in the cell is controlled to a certain degree by cell progression through the S phase. This type of control, evidently, was reflected in limited dsRNA accumulation in the cells blocked at or near G1/S border, in continuous dsRNA accumulation in the cells slowly progressing through S phase, and in accumulation of large amounts of dsRNA after renewal of progression through the S phase.  相似文献   

16.
To analyze the relationship between differentiation and DNA replication, the effect of aphidicolin, a specific inhibitor for DNA polymerase alpha, was measured with respect to erythroid differentiation and activities of DNA polymerases alpha, beta, and gamma. Five micromolar aphidicolin completely blocked the growth of K562 cells and caused 80% of cells to become hemoglobin positive after 5 days exposure. The cessation of K562 cell growth induced by aphidicolin was irreversible, whereas the inhibition of HeLa cell growth was completely reversible. The enzyme activity of DNA polymerase alpha of K562 cells showed a 50-110% increase with aphidicolin treatment as compared to control K562 cells; activities of DNA polymerases beta and gamma were not affected. These features sharply contrasted with the erythroid induction of the same cells by hemin, where cell growth was not suppressed and DNA polymerase alpha was not increased but rather decreased. The enzyme activity of DNA polymerase alpha remained high even after removal of aphidicolin from the culture medium. These results suggest that treatment with aphidicolin might induce an accumulation of protein factors for replication and/or differentiation, causing rapid cell differentiation of cells without cell division.  相似文献   

17.
Dendritic cells are susceptible to human immunodeficiency virus (HIV) infection and may transmit the virus to T cells in vivo. Scarce information is available about drug efficacy in dendritic cells because preclinical testing of antiretroviral drugs has been limited predominantly to T cells and macrophages. We compared the antiviral activities of hydroxyurea and two protease inhibitors (indinavir and ritonavir) in monocyte-derived dendritic cells and in lymphocytes. At therapeutic concentrations (50 to 100 microM), hydroxyurea inhibited supernatant virus production from monocyte-derived dendritic cells in vitro but the drug was ineffective in activated lymphocytes. Concentrations of hydroxyurea insufficient to be effective in activated lymphocytes cultured alone strongly inhibited supernatant virus production from cocultures of uninfected, activated lymphocytes with previously infected monocyte-derived dendritic cells in vitro. In contrast, protease inhibitors were up to 30-fold less efficient in dendritic cells than in activated lymphocytes. Our data support the rationale for testing of the combination of hydroxyurea and protease inhibitors, since these drugs may have complementary antiviral efficacies in different cell compartments. A new criterion for combining drugs for the treatment of HIV infection could be to include at least one drug that selectively targets HIV in viral reservoirs.  相似文献   

18.
Cytotoxic and mutagenic effects of aphidicolin (APC), an inhibitor of DNA polymerases alpha and delta, were studied in human diploid VH-10 fibroblasts. The cells were treated (2 or 4h) with APC at concentration ranges of 10-40 microM. The effect of APC on cell survival after 4 h treatment was significantly higher than after 2 h treatment. The mutagenicity of APC was investigated at the HPRT locus, and the frequency of HPRT mutants was estimated by selection in medium containing 6-thioguanine (6-TG). Treatment of fibroblast cells with 20 microM of APC for 2 or 4 h resulted approximately in 5 or 10 times increase of 6-TG resistant mutant frequencies, respectively, compared to untreated control cells.The cell cycle analyses performed during the expression time (9-12 days) have shown that after 2 and 4h treatment with APC the cells were blocked in G2 phase during the majority of the expression period, compared to control cells. Four days after the treatment, the amount of cells in G2 phase increased about two-fold (28.6-31.8% compared to 13.5% in the untreated cells). The mode of cell death during the expression time was via necrosis, rather than apoptosis, which was demonstrated by fluorescein-diacetate (FDA)-staining and terminal dUTP nick end labeling (TUNEL)-method.  相似文献   

19.
After irradiation of HeLa S3 cells with 220 kv x-rays during G1, treatment with any of six inhibitors of DNA synthesis results in the progressive enhancement of cell killing (loss of colony-forming ability). Incubation with hydroxyurea, cytosine arabinoside, or hydroxylamine reduces survival five- to twentyfold in about 8 hr, following an x-ray dose of 400 rads. In contrast, treatment with 5-fluorodeoxyuridine, deoxyadenosine, or thymidine after this same dose reduces survival less than twofold during a comparable time interval. These differences occur at drug concentrations which reduce the rate of DNA synthesis by at least 95% (except in the case of hydroxylamine, which inhibits DNA synthesis to a smaller extent), but which kill no unirradiated cells during the treatment periods. When inhibition of DNA synthesis with either hydroxyurea or cytosine arabinoside is reversed by addition of appropriate precursors of DNA, the enhancement is abolished. With hydroxyurea, the rate of cell killing is dependent on the dose of x-rays previously administered, and the extent of enhancement seems to be related to the drug concentration. Imposition of a delay between irradiation and addition of hydroxyurea does not abolish the enhancement effect, but instead causes a proportional lag in its inception. Postirradiation treatment of S phase cells with either hydroxyurea or cytosine arabinoside also enhances killing. Furthermore, unlike early G1 cells, S cells (and, as shown previously, cells blocked at the G1-S transition) are sensitized by preirradiation exposure to hydroxyurea.  相似文献   

20.
When resting 3T6 cells undergo a serum-induced transition to the growing state, the cytoplasmic content of ribosomal, transfer and messenger RNA increase as the cells prepare for DNA synthesis. The normal linear increase in mRNA content occurs even when the production of ribosomes is blocked. In this paper we determine the effect of inhibiting protein synthesis on the increase in poly(A) (+) mRNA content. Resting cells were serum stimulated in the presence of cycloheximide or puromycin at levels which inhibit protein synthesis by greater than 95%. Cytoplasmic poly(A) (+) mRNA content was determined at various times thereafter. We found that mRNA content increased five to ten times more rapidly in drug treated cells than in control cells stimulated in the absence of inhibitors. mRNA content increased 50–70% by one hour, and 60–90% by two hours following stimulation in the presence of inhibitor, and remained more or less constant thereafter. In contrast, mRNA content increased linearly in control stimulated cultures and did not double until about 15 hours after stimulation. The rapid increase in mRNA content is most likely the result of inhibition of protein synthesis rather than a secondary effect of the drug since the same observations were made in growth stimulated cells if protein synthesis was blocked with either puromycin or cycloheximide. A similar effect was also observed with resting 3T6, exponentially growing 3T6 and growing HeLa cells following exposure to cycloheximide, although the magnitude of the increase was less than that observed with growth stimulated cells. Puromycin had negligible effect on mRNA content in resting or exponentially growing cells. The rapid increase in cytoplasmic poly(A) (+) mRNA content was not due to rapid unbalanced export of nuclear poly(A) (+) RNA into the cytoplasm since there was no decrease in nuclear poly(A) content following serum stimulation in the presence of cycloheximide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号