首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
2.
The mitochondrial death pathway is triggered in cultured sympathetic neurons by deprivation of nerve growth factor (NGF), but the death mechanisms activated by deprivation of other neurotrophic factors are poorly studied. We compared sympathetic neurons deprived of NGF to those deprived of glial cell line-derived neurotrophic factor (GDNF). In contrast to NGF-deprived neurons, GDNF-deprived neurons did not die via the mitochondrial pathway. Indeed, cytochrome c was not released to the cytosol; Bax and caspase-9 and -3 were not involved; overexpressed Bcl-xL did not block the death; and the mitochondrial ultrastructure was not changed. Similarly to NGF-deprived neurons, the death induced by GDNF removal is associated with increased autophagy and requires multiple lineage kinases, c-Jun and caspase-2 and -7. Serine 73 of c-Jun was phosphorylated in both NGF- and GDNF-deprived neurons, whereas serine 63 was phosphorylated only in NGF-deprived neurons. In many NGF-deprived neurons, the ultrastructure of the mitochondria was changed. Thus, a novel nonmitochondrial caspase-dependent death pathway is activated in GDNF-deprived sympathetic neurons.  相似文献   

3.
When deprived of neurotrophic factors, neuronal cells undergo a form of programmed cell death that involves a cascade of gene expression. To better understand this cascade, we screened the genes induced during programmed cell death evoked in neuronal PC6-3 cells by NGF-depletion and discovered a novel gene, NIPK (Neuronal cell death Inducible Putative Kinase), that contains a kinase-like domain. Expression of NIPK was also induced in cultured sympathetic neurons by NGF deprivation and in cortical neurons exposed to the Ca2+ ionophore, A23187. In contrast, NIPK was not induced during non-neuronal cell death evoked by serum or growth factor deprivation, or by treatment with methyl methanesulfonate, an agent that causes cell death by damaging DNA. Taken together, these findings suggest that NIPK is involved in programmed cell death via a pathway that is present in neurons but is absent in non-neurons.  相似文献   

4.
The stress activated protein kinase pathway culminates in c-Jun phosphorylation mediated by the Jun Kinases (JNKs). The role of the JNK pathway in sympathetic neuronal death is unclear in that apoptosis is not inhibited by a dominant negative protein of one JNK kinase, SEK1, but is inhibited by CEP-1347, a compound known to inhibit this overall pathway but not JNKs per se. To evaluate directly the apoptotic role of the JNK isoform that is selectively expressed in neurons, JNK3, we isolated sympathetic neurons from JNK3-deficient mice and quantified nerve growth factor (NGF) deprivation-induced neuronal death, oxidative stress, c-Jun phosphorylation, and c-jun induction. Here, we report that oxidative stress in neurons from JNK3-deficient mice is normal after NGF deprivation. In contrast, NGF-deprivation-induced increases in the levels of phosphorylated c-Jun, c-jun, and apoptosis are each inhibited in JNK3-deficient mice. Overall, these results indicate that JNK3 plays a critical role in activation of c-Jun and apoptosis in a classic model of cell-autonomous programmed neuron death.  相似文献   

5.
Axotomized neurons have several characteristics that are different from intact neurons. Here we show that, unlike established cultures, the axotomized sympathetic neurons deprived of NGF become committed to die before caspase activation, since the same proportion of NGF-deprived neurons are rescued by NGF regardless of whether caspases are inhibited by the pan-caspase inhibitor Boc-Asp(O-methyl)-CH(2)F (BAF). Despite prolonged Akt and ERK signaling induced by NGF after BAF treatment has prevented death, the neurons fail to increase protein synthesis, recover ATP levels, or grow. Within 3 d, all the mitochondria disappear without apparent removal of any other organelles or loss of membrane integrity. Although NGF does rescue intact BAF-treated 6-d cultures after NGF deprivation, rescue by NGF fails when these neurons are axotomized before NGF deprivation and BAF treatment. Moreover, cytosolic cytochrome c rapidly kills axotomized neurons. We propose that axotomy induces signals that make sympathetic neurons competent to die prematurely. NGF cannot repair these NGF-deprived, BAF-treated neurons because receptor signaling (which is normal) is uncoupled from protein renewal, and the mitochondria (which are damaged) go on to be eliminated. Hence, the order of steps underlying neuronal death commitment is mutable and open to regulation.  相似文献   

6.
Fas apoptosis inhibitory molecule (FAIM) is a protein identified as an antagonist of Fas-induced cell death. We show that FAIM overexpression fails to rescue neurons from trophic factor deprivation, but exerts a marked neurite growth-promoting action in different neuronal systems. Whereas FAIM overexpression greatly enhanced neurite outgrowth from PC12 cells and sympathetic neurons grown with nerve growth factor (NGF), reduction of endogenous FAIM levels by RNAi decreased neurite outgrowth in these cells. FAIM overexpression promoted NF-kappa B activation, and blocking this activation by using a super-repressor I kappa B alpha or by carrying out experiments using cortical neurons from mice that lack the p65 NF-kappa B subunit prevented FAIM-induced neurite outgrowth. The effect of FAIM on neurite outgrowth was also blocked by inhibition of the Ras-ERK pathway. Finally, we show that FAIM interacts with both Trk and p75 neurotrophin receptor NGF receptors in a ligand-dependent manner. These results reveal a new function of FAIM in promoting neurite outgrowth by a mechanism involving activation of the Ras-ERK pathway and NF-kappa B.  相似文献   

7.
Sympathetic neurons depend on nerve growth factor (NGF) for their survival both in vivo and in vitro. In culture, the neurons die after NGF withdrawal by an autonomous cell death program but whether these neurons die by apoptosis is under debate. Using vital DNA stains and in situ nick translation, we show here that extensive chromatin condensation and DNA fragmentation occur before plasma membrane breakdown during the death of NGF-deprived rat sympathetic neurons in culture. Furthermore, kinetic analysis of chromatin condensation events within the cell population is consistent with a model which postulates that after NGF deprivation nearly all of the neurons die in this manner. Although the dying neurons display membrane blebbing, cell fragmentation into apoptotic bodies does not occur. Apoptotic events proceed rapidly at around the time neurons become committed to die, regardless of neuronal culture age. However the duration of NGF deprivation required to commit neurons to die, and the rate at which apoptosis occurs, increase with culture age. Thus, within the first week of culture, apoptosis is the predominant form of cell death in sympathetic neurons.  相似文献   

8.
The ability of insulin to protect neurons from apoptosis was examined in differentiated R28 cells, a neural cell line derived from the neonatal rat retina. Apoptosis was induced by serum deprivation, and the number of pyknotic cells was counted. p53 and Akt were examined by immunoblotting after serum deprivation and insulin treatment, and caspase-3 activation was examined by immunocytochemistry. Serum deprivation for 24 h caused approximately 20% of R28 cells to undergo apoptosis, detected by both pyknosis and activation of caspase-3. 10 nm insulin maximally reduced the amount of apoptosis with a similar potency as 1.3 nm (10 ng/ml) insulin-like growth factor 1, which acted as a positive control. Insulin induced serine phosphorylation of Akt, through the phosphatidylinositol (PI) 3-kinase pathway. Inhibition of PI 3-kinase with wortmannin or LY294002 blocked the ability of insulin to rescue the cells from apoptosis. SN50, a peptide inhibitor of NF-kappaB nuclear translocation, blocked the rescue effect of insulin, but neither insulin or serum deprivation induced phosphorylation of IkappaB. These results suggest that insulin is a survival factor for retinal neurons by activating the PI 3-kinase/Akt pathway and by reducing caspase-3 activation. The rescue effect of insulin does not appear to be mediated by NF-kappaB or p53. These data suggest that insulin provides trophic support for retinal neurons through a PI 3-kinase/Akt-dependent pathway.  相似文献   

9.
《The Journal of cell biology》1996,135(5):1341-1354
Sympathetic neurons undergo programmed cell death (PCD) when deprived of NGF. We used an inhibitor to examine the function of interleukin-1 beta-converting enzyme (ICE) family proteases during sympathetic neuronal death and to assess the metabolic and genetic status of neurons saved by such inhibition. Bocaspartyl(OMe)-fluoromethylketone (BAF), a cell-permeable inhibitor of the ICE family of cysteine proteases, inhibited ICE and CPP32 (IC50 approximately 4 microM) in vitro and blocked Fas-mediated apoptosis in thymocytes (EC50 approximately 10 microM). At similar concentrations, BAF also blocked the NGF deprivation-induced death of rat sympathetic neurons in culture. Compared to NGF-maintained neurons, BAF-saved neurons had markedly smaller somas and maintained only basal levels of protein synthesis; readdition of NGF restored growth and metabolism. Although BAF blocked apoptosis in sympathetic neurons, it did not prevent the fall in protein synthesis or the increase in the expression of c-jun, c- fos, and other mRNAs that occur during neuronal PCD, implying that the ICE-family proteases function downstream of these events during PCD.NGF and BAF rescued sympathetic neurons with an identical time course, suggesting that NGF, in addition to inhibiting metabolic and genetic events associated with neuronal PCD, can act posttranslationally to abort apoptosis at a time point indistinguishable from the activation of cysteine proteases. Both poly-(ADP ribose) polymerase and pro-ICE and Ced-3 homolog-1 (ICH-1) appear to be cleaved in a BAF-inhibitable manner, although the majority of pro-CPP32 appears unchanged, suggesting that ICH-1 is activated during neuronal PCD. Potential implications of these findings for anti-apoptotic therapies are discussed.  相似文献   

10.
11.
Sympathetic neurons undergo apoptosis when deprived of nerve growth factor (NGF). Inhibitors of RNA or protein synthesis block this death, suggesting that gene expression is important for apoptosis in this system. We have identified SM-20 as a new gene that increases in expression in sympathetic neurons after NGF withdrawal. Expression of SM-20 also increases during neuronal death caused by cytosine arabinoside or the phosphatidylinositol 3-kinase inhibitor LY294002. In addition, SM-20 protein synthesis is elevated in NGF-deprived neurons compared with neurons maintained with NGF. Importantly, expression of SM-20 in sympathetic neurons causes cell death in the presence of NGF. These results suggest that SM-20 may function to regulate cell death in neurons.  相似文献   

12.
To study molecular mechanisms underlying neuronal cell death, we have used sympathetic neurons from superior cervical ganglia which undergo programmed cell death when deprived of nerve growth factor. These neurons have been microinjected with expression vectors containing cDNAs encoding selected proteins to test their regulatory influence over cell death. Using this procedure, we have shown previously that sympathetic neurons can be protected from NGF deprivation by the protooncogene Bcl-2. We now report that the E1B19K protein from adenovirus and the p35 protein from baculovirus also rescue neurons. Other adenoviral proteins, E1A and E1B55K, have no effect on neuronal survival. E1B55K, known to block apoptosis mediated by p53 in proliferative cells, failed to rescue sympathetic neurons suggesting that p53 is not involved in neuronal death induced by NGF deprivation. E1B19K and p35 were also coinjected with Bcl-Xs which blocks Bcl-2 function in lymphoid cells. Although Bcl-Xs blocked the ability of Bcl- 2 to rescue neurons, it had no effect on survival that was dependent upon expression of E1B19K or p35.  相似文献   

13.
During apoptosis induced by various stimuli, cytochrome c is released from mitochondria into the cytosol where it participates in caspase activation. This process has been proposed to be an irreversible consequence of mitochondrial permeability transition pore opening, which leads to mitochondrial swelling and rupture of the outer mitochondrial membrane. Here we present data demonstrating that NGF-deprived sympathetic neurons protected from apoptosis by caspase inhibitors possess mitochondria which, though depleted of cytochrome c and reduced in size, remained structurally intact as viewed by electron microscopy. After re-exposure of neurons to NGF, mitochondria recovered their normal size and their cytochrome c content, by a process requiring de novo protein synthesis. Altogether, these data suggest that depletion of cytochrome c from mitochondria is a controlled process compatible with function recovery. The ability of sympathetic neurons to recover fully from trophic factor deprivation provided irreversible caspase inhibitors have been present during the insult period, has therapeutical implications for a number of acute neuropathologies.  相似文献   

14.
1. Cultured cerebellar granule neurons maintained in medium containing 26 mM potassium (high K+ or HK+) undergo cell death when switched to medium with 5 mM potassium (low K+ or LK+). This low K(+)-induced cell death has typical features of apoptosis. The intracellular signaling pathway of low K(+)-induced apoptosis has been investigated. 2. Cerebellar granule neurons become committed to undergo apoptosis between 2 and 5 h after K+ deprivation, judging from the inability of high K+ to rescue them after this time. Although the levels of most mRNAs decrease markedly concomitant with commitment, expression of c-jun mRNA increases 2-3 h after K+ deprivation. Among the family of caspases, a caspase-3-like protease is activated within 4 h of lowering the K+ concentration. A caspase-1-like protease is also activated within 2 h of K+ deprivation. 3. Inhibition of phosphatidylinositol 3-kinase (PI3-K) activity by LY294002 or wortmannin also induces apoptosis in cerebellar granule neurons. The intracellular signaling pathway of LY294002-induced apoptosis has been investigated. The activity of c-Jun N-terminal kinase (JNK) increases 8 h after addition of LY294002 to high K+ medium or low K+ medium containing BDNF. Expression of c-Jun protein also increases almost simultaneously. 4. The low K(+)-induced apoptosis of cerebellar granule neurons is prevented by high K+ (membrane depolarization by high K+), BDNF, IGF-1, bFGF or cAMP. The intracellular signaling pathways by which these agents prevent low K(+)-induced apoptosis have been investigated. Agents other than cAMP prevent apoptosis through PI3-K and a Ser/Thr kinase, Akt/PKB. The survival-promoting effect of cAMP does not depend on the PI3-K-Akt pathway.  相似文献   

15.
Caspase-9 plays a marginal role in serum starvation-induced apoptosis   总被引:6,自引:0,他引:6  
Serum withdrawal represents a potent trigger to induce caspase-dependent apoptosis in a series of cell culture models. In rat 423-cells, caspase-8 and caspase-3 were apparently sufficient to initiate and proceed apoptosis without involving the intrinsic amplification loop via caspase-9. To assess the reasons for this inactivity of an otherwise crucial initiator caspase, we examined the ability for apoptosome assembly in 423-cells. Caspase-9 and Apaf-1 were expressed and cytochrome c released from mitochondria upon serum withdrawal. Although functional apoptosomes were assembled successfully in vitro, caspase-9 processing was found essentially refrained during apoptosis in 423-cells. Cell fractionation experiments revealed that sequestration of caspase-9 to cytoskeletal structures in 423-cells contributed to the observed impairment of apoptosome formation. Altogether, these findings provide evidence that serum starvation-induced apoptosis may occur independently of the intrinsic pathway and that caspase-9 sequestration potentially represents a novel biological antiapoptotic strategy.  相似文献   

16.
Cardiac fibroblasts play an essential role in the physiology of the heart. These produce extracellular matrix proteins and synthesize angiogenic and cardioprotective factors. Although fibroblasts of cardiac origin are known to be resistant to apoptosis and to remain metabolically active in situations compromising cell survival, the underlying mechanisms are unknown. Here, we report that cardiac fibroblasts were more resistant than dermal or pulmonary fibroblasts to mitochondria-dependent cell death. Cytochrome c release was blocked in cardiac fibroblasts but not in dermal fibroblasts treated with staurosporine, etoposide, serum deprivation, or simulated ischemia, precluding caspase-3 activation and DNA fragmentation. Resistance to apoptosis of cardiac fibroblasts correlated with the expression of the anti-apoptotic protein Bcl-2, whereas skin and lung fibroblasts did not express detectable levels of this protein. Bcl-x(L,) Bax, and Bak were expressed at similar levels in cardiac, dermal, and lung fibroblasts. In addition, the death of cardiac fibroblasts during hypoxia was not associated with the cleavage of Bid but rather with Bcl-2 disappearance, suggesting the requirement of the mitochondrial apoptotic machinery to execute death receptor-induced programmed cell death. Knockdown of bcl-2 expression by siRNA in cardiac fibroblasts increased their apoptotic response to staurosporine, serum, and glucose deprivation and to simulated ischemia. Moreover, dermal fibroblasts overexpressing Bcl-2 achieved a similar level of resistance to these stimuli as cardiac fibroblasts. Thus, our data demonstrate that Bcl-2 is an important effector of heart fibroblast resistance to apoptosis and highlight a probable mechanism for promoting survival advantage in fibroblasts of cardiac origin.  相似文献   

17.
Nerve growth factor (NGF) serves a critical survival-promoting function for developing sympathetic neurons. Following removal of NGF, sympathetic neurons undergo apoptosis characterized by the activation of c-Jun N-terminal kinases (JNKs), up-regulation of BH3-only proteins including BcL-2-interacting mediator of cell death (BIM)EL, release of cytochrome c from mitochondria, and activation of caspases. Here we show that two small-molecule prolyl hydroxylase inhibitors frequently used to activate hypoxia-inducible factor (HIF) – ethyl 3,4-dihydroxybenzoic acid (DHB) and dimethyloxalylglycine (DMOG) – can inhibit apoptosis caused by trophic factor deprivation. Both DHB and DMOG blocked the release of cytochrome c from mitochondria after NGF withdrawal, whereas only DHB blocked c-Jun up-regulation and phosphorylation. DHB, but not DMOG, also attenuated the induction of BIMEL in NGF-deprived neurons, suggesting a possible mechanism whereby DHB could inhibit cytochrome c release. DMOG, on the other hand, was substantially more effective at stabilizing HIF-2α and inducing expression of the HIF target gene hexokinase 2 than was DHB. Thus, while HIF prolyl hydroxylase inhibitors can delay cell death in NGF-deprived neurons, they do so through distinct mechanisms that, at least in the case of DHB, are partly independent of HIF stabilization.  相似文献   

18.
The p75 neurotrophin receptor (p75NTR) is a death domain (DD) containing receptor of the TNF/FAS(APO-1) family. p75NTR has recently been shown to mediate apoptosis in certain types of neurons as well as in oligodendrocytes. The molecular mechanisms by which p75NTR stimulates apoptosis are still unknown. Here, we have tested whether overexpression of p75NTR could modulate survival of sympathetic neurons cultured in the presence or absence of NGF. Moreover, using the yeast two-hybrid system, we tested whether p75NTR intracellular domain was able to dimerize or interact with known DD-containing proteins including FADD, RIP, RAIDD and TRADD. We found that over-expression of p75NTR had no effect on the survival of sympathetic neurons cultured in the presence of NGF but instead delayed neuronal death following NGF deprivation. These results strongly support the finding that p75NTR is not involved in the apoptosis process induced by NGF deprivation in sympathetic neurons. We also foun d that the intracellular domain of p75NTR failed to associate either with itself or with other known DD-containing proteins. This suggests that the mechanisms by which p75NTR triggers apoptosis in certain cell types are different from those used by other receptors of the TNF/FAS family.  相似文献   

19.
Nerve growth factor (NGF) deprivation induces a Bax-dependent, caspase-dependent programmed cell death in sympathetic neurons. We examined whether the release of cytochrome c was accompanied by the loss of mitochondrial membrane potential during sympathetic neuronal death. NGF- deprived, caspase inhibitor-treated mouse sympathetic neurons maintained mitochondrial membrane potential for 25-30 h after releasing cytochrome c. NGF- deprived sympathetic neurons became committed to die, as measured by the inability of cells to be rescued by NGF readdition, at the time of cytochrome c release. In the presence of caspase inhibitor, however, this commitment to death was extended beyond the point of cytochrome c release, but only up to the subsequent point of mitochondrial membrane potential loss. Caspase-9 deficiency also arrested NGF-deprived sympathetic neurons after release of cytochrome c, and permitted these neurons to be rescued with NGF readdition. Commitment to death in the NGF-deprived, caspase- 9-deficient sympathetic neurons was also coincident with the loss of mitochondrial membrane potential. Thus, caspase inhibition extended commitment to death in trophic factor-deprived sympathetic neurons and allowed recovery of neurons arrested after the loss of cytochrome c, but not beyond the subsequent loss of mitochondrial membrane potential.  相似文献   

20.
MCF-7 cells lack caspase-3 but undergo mitochondrial-dependent apoptosis via caspase-7 activation. It is assumed that the Apaf-1-caspase-9 apoptosome processes caspase-7 in an analogous manner to that described for caspase-3. However, this has not been validated experimentally, and we have now characterized the caspase-7 activating apoptosome complex in MCF-7 cell lysates activated with dATP/cytochrome c. Apaf-1 oligomerizes to produce approximately 1.4-MDa and approximately 700-kDa apoptosome complexes, and the latter complex directly cleaves/activates procaspase-7. This approximately 700-kDa apoptosome complex, which is also formed in apoptotic MCF-7 cells, is assembled by rapid oligomerization of Apaf-1 and followed by a slower process of procaspase-9 recruitment and cleavage to form the p35/34 forms. However, procaspase-9 recruitment and processing are accelerated in lysates supplemented with caspase-3. In lysates containing very low levels of Smac and Omi/HtrA2, XIAP (X-linked inhibitor of apoptosis) binds tightly to caspase-9 in the apoptosome complex, and as a result caspase-7 processing is abrogated. In contrast, in MCF-7 lysates containing Smac and Omi/HtrA2, active caspase-7 is released from the apoptosome and forms a stable approximately 200-kDa XIAP-caspase-7 complex, which apparently does not contain cIAP1 or cIAP2. Thus, in comparison to caspase-3-containing cells, XIAP appears to have a more significant antiapoptotic role in MCF-7 cells because it directly inhibits caspase-7 activation by the apoptosome and also forms a stable approximately 200-kDa complex with active caspase-7.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号