首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The engineered disulfide bridge between residues 21 and 142 of phage T4 lysozyme spans the active-site cleft and can be used as a switch to control the activity of the enzyme (Matsumura, M. & Matthews, B.W., 1989, Science 243, 792-794). In the oxidized form the disulfide increases the melting temperature of the protein by 11 degrees C at pH 2. The crystal structure of this mutant lysozyme has been determined in both the reduced and oxidized forms. In the reduced form, the crystal structure of the mutant is shown to be extremely similar to that of wild type. In the oxidized form, however, the formation of the disulfide bridge causes the alpha-carbons of Cys 21 and Cys 142, on opposite sides of the active-site cleft, to move toward each other by 2.5 A. In association with this movement, the amino-terminal domain of the protein undergoes a rigid-body rotation of 5.1 degrees relative to the carboxy-terminal domain. This rotation occurs about an axis passing through the junction of the amino-terminal and carboxy-terminal domains and is also close to the axis that best fits the apparent thermal motion of the amino-terminal domain seen previously in crystals of wild-type lysozyme. Even though the engineered Cys 21-Cys 142 disulfide links together the amino-terminal and carboxy-terminal domains of T4 lysozyme, it does not reduce the apparent mobility of the one domain relative to the other. The pronounced "hinge-bending" mobility of the amino-terminal domain that is suggested by the crystallographic thermal parameters of wild-type lysozyme persists in the oxidized (and reduced) mutant structures. In the immediate vicinity of the introduced disulfide bridge the mutant structure is more mobile (or disordered) than wild type, so much so that the exact conformation of Cys 21 remains obscure. As with the previously described disulfide bridge between residues 9 and 164 of T4 lysozyme (Pjura, P.E., Matsumura, M., Wozniak, J.A., & Matthews, B.W., 1990, Biochemistry 29, 2592-2598), the engineered cross-link substantially enhances the stability of the protein without making the folded structure more rigid.  相似文献   

2.
Structure of bacteriophage T4 lysozyme refined at 1.7 A resolution   总被引:20,自引:0,他引:20  
The structure of the lysozyme from bacteriophage T4 has been refined at 1.7 A resolution to a crystallographic residual of 19.3%. The final model has bond lengths and bond angles that differ from "ideal" values by 0.019 A and 2.7 degrees, respectively. The crystals are grown from electron-dense phosphate solutions and the use of an appropriate solvent continuum substantially improved the agreement between the observed and calculated structure factors at low resolution. Apart from changes in the conformations of some side-chains, the refinement confirms the structure of the molecule as initially derived from a 2.4 A resolution electron density map. There are 118 well-ordered solvent molecules that are associated with the T4 lysozyme molecule in the crystal. Four of these are more-or-less buried. There is a clustering of water molecules within the active site cleft but, other than this, the solvent molecules are dispersed around the surface of the molecule and do not aggregate into ice-like structures or pentagonal or hexagonal clusters. The apparent motion of T4 lysozyme in the crystal can be interpreted in terms of significant interdomain motion corresponding to an opening and closing of the active site cleft. For the amino-terminal domain the motion can be described equally well (correlation coefficients approx. 0.87) as quasi-rigid-body motion either about a point or about an axis of rotation. The motion in the crystals of the carboxy-terminal domain is best described as rotation about an axis (correlation coefficient 0.80) although in this case the apparent motion seems to be influenced in part by crystal contacts and may be of questionable relevance to dynamics in solution.  相似文献   

3.
The structure and internal motions of the protein hen egg white lysozyme are studied by analysis of simulation and experimental data. A molecular dynamics simulation and an energy minimization of the protein in vacuum have been made and the results compared with high-resolution structures and temperature factors of hen egg white lysozyme in two different crystal forms and of the homologous protein human lysozyme. The structures obtained from molecular dynamics and energy minimization have root-mean-square deviations for backbone atoms of 2.3 Å and 1.1–1.3 Å, respectively, relative to the crystal structures; the different crystal structures have root-mean-square deviations of 0.73–0.81 Å for the backbone atoms. In comparing the backbone dihedral angles, the difference between the dynamics and the crystal structure on which it is based is the same as that between any two crystal structures. The internal fluctuations of atomic positions calculated from the molecular dynamics trajectory agree well with the temperature factors from the three structures. Simulation and crystal results both show that there are large motions for residues involved in exposed turns of the backbone chain, relatively smaller motions for residues involved in the middle of helices or β-sheet structures, and relatively small motions of residues near disulfide bridges. Also, both the simulation and crystal data show that side-chain atoms have larger fluctuations than main-chain atoms. Moreover, the regions that have large deviations among the x-ray crystal structures, which indicates flexibility, are found to have large fluctuations in the simulation.  相似文献   

4.
Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo > 0 to the resolution of 1.12 Å and 1.15 Å, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 Å (TEL) and 0.034 Å (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed Beqv. However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of Beqv, was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. Proteins 30:232–243, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
J F Gibrat  N Go 《Proteins》1990,8(3):258-279
A normal mode analysis of human lysozyme has been carried out at room temperature. Human lysozyme is an enzyme constituted of two domains separated by an active site cleft, the motion of which is thought to be relevant for biological function. This motion has been described as a hinge bending motion. McCammon et al. have determined the characteristics of the hinge bending motion but they assumed a prior knowledge of the hinge axis. In this work we propose a method which is free from this assumption and determines the hinge axis and root mean square (rms) rotation angle which give the best agreement with the pattern of changes in all the distances between nonhydrogen atoms in the two domains, obtained by the normal mode analysis. The hinge axis we found is notably different from the one previously determined and goes, roughly, through the C alpha 55 and C alpha 76, i.e., it is located at the base of the beta-sheet of the second domain. The rms value for the rotation angle is also twice as large as the previous one: 3.37 degrees. It is shown that this hinge bending motion provides a fairly good approximation of the dynamics of human lysozyme and that the normal mode with the lowest frequency has a dominating contribution to this hinge bending motion. A study of the accessible surface area of the residues within the cleft reveals that the motion does not result in a better exposure to the solvent of these residues. A characterization of the thermally excited state (under the hypothesis of the harmonicity of the potential energy surface) has been done using the concept of topology of atom packing. Under this hypothesis the thermal fluctuations result only in a small change of the topology of atom packing, leading therefore to nearly elastic deformations of the protein.  相似文献   

6.
The crystal structure of the inclusion complex of cyclomaltoheptaose (beta-cyclodextrin) with hexamethylenetetramine was determined at temperatures of 123, 173, 223, and 293 K. The rigid-body motion of the host and guest molecules was evaluated by means of the TLS method that represents the molecular motion in terms of translation, libration, and screw motion. In increasing the temperature from 123 to 293 K, the amplitude of the rigid body vibration of the host molecule was increased from 1.0 to 1.3 degrees in the rotational motion and from 0.16 to 0.17 A in the translational motion. The cyclomaltoheptaose molecule has the flexibility in seven alpha-(1-->4)-linkages, and each glucose unit was in the rotational vibration around an axis through two glycosidic oxygen atoms. As a result, the rigid-body parameters of cyclomaltoheptaose were considered to be overestimated because of including the contribution from the local motion of glucose units. In contrast, for the guest molecule having no structural flexibility, the TLS analysis demonstrated that the atomic thermal vibration was mostly derived from the rigid body motion. The rotational amplitude of hexamethylenetetramine was changed from 5.2 to 6.6 degrees in increasing the temperature from 123 to 293 K, while the change of the translational amplitude was from 0.20 to 0.23 A. The translational motion of the guest molecule was hindered by the inside wall of the host cavity. The molecular motion was characterized by the rotational vibration around the axis through two nitrogen atoms that were involved in the hydrogen-bond formation.  相似文献   

7.
Model-free methods are introduced to determine quantities pertaining to protein domain motions from normal mode analyses and molecular dynamics simulations. For the normal mode analysis, the methods are based on the assumption that in low frequency modes, domain motions can be well approximated by modes of motion external to the domains. To analyze the molecular dynamics trajectory, a principal component analysis tailored specifically to analyze interdomain motions is applied. A method based on the curl of the atomic displacements is described, which yields a sharp discrimination of domains, and which defines a unique interdomain screw-axis. Hinge axes are defined and classified as twist or closure axes depending on their direction. The methods have been tested on lysozyme. A remarkable correspondence was found between the first normal mode axis and the first principal mode axis, with both axes passing within 3 Å of the alpha-carbon atoms of residues 2, 39, and 56 of human lysozyme, and near the interdomain helix. The axes of the first modes are overwhelmingly closure axes. A lesser degree of correspondence is found for the second modes, but in both cases they are more twist axes than closure axes. Both analyses reveal that the interdomain connections allow only these two degrees of freedom, one more than provided by a pure mechanical hinge. Proteins 27:425–437, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

8.
Harata K  Kanai R 《Proteins》2002,48(1):53-62
The crystal structure of turkey egg lysozyme (TEL) complexed with di-N-acetylchitobiose (NAG2) was refined at 1.19 A resolution by the full-matrix least-squares method with anisotropic temperature factors, and its thermal motion was evaluated by the TLS method. The average ESDs of atomic parameters of nonhydrogen atoms were 0.030 A for coordinates and 0.025 A(2) for anisotropic temperature factors. The active site cleft of TEL binds the alpha-anomer of NAG2 in a nonproductive binding mode with its pyranose rings parallel to a beta-sheet. The TEL structure was compared with the re-refined 1.12 A structure of native TEL. The RMS difference for equivalent Calpha atoms was 0.103 A and a relatively large difference was observed in the region of residues 104-125 rather than in the beta-sheet region where NAG2 was bound. In contrast, the temperature factor of the beta-sheet region was significantly decreased by the NAG2 binding. The TLS model that describes the rigid body motion in translation, libration, and screw motion was adopted for the evaluation of the molecular motion of TEL and NAG2, and the TLS parameters were determined by the least-squares fit to U(ij). The contribution of the external motion of TEL was estimated to be 55.8% of the observed temperature factor for the native structure and 45.9% for the NAG2 complex. The internal motion of TEL represented with atomic thermal ellipsoids was very similar between the native and complex structures except the NAG2 binding region. In the structure of NAG2, the rigid body motion dominates the thermal motion. The center of rotation of NAG2, 4.45A far from the center of gravity, is on the nitrogen atom of the acetylamino group that is hydrogen bonded to the main-chain peptide groups of Asn49 and Ala107. The rigid body motion of NAG2 indicates that the acetylamino group is most strongly bound to the active site, and the recognition of this group is a crucial step of the substrate binding.  相似文献   

9.
A preliminary analysis is presented of whether and to what extent thermal motion of protein molecules as rigid bodies contributes to the mobility found in X-ray and M?ssbauer studies. A simple theory is advanced enabling the estimation of mean-square amplitudes of translational and librational motion of the protein molecules in crystals and amorphous glasses from the experimental data on the elastic properties of these solids. The values calculated and their dependence on the crystal packing, temperature and hydration level were found to be in good accord with the data of X-ray analysis and M?ssbauer spectroscopy. The external modes were concluded to contribute significantly to the values of mean value of chi 2 measured by the last two methods meaning that the conventional amplitudes of internal motion in proteins were overestimated. The real average amplitude of thermal motion of atoms in the protein interior should be close to that in molecular crystals, in accordance with the crystal-like packing of atoms inside the protein globule and some other "crystal-like" physical characteristics such as Young's modulus, adiabatic compressibility and thermal expansion coefficient. Factors are discussed which determine the temperature dependence of the amplitudes of external and internal modes of protein motion.  相似文献   

10.
The dynamic structure of a protein, human lysozyme, is determined by the normal mode refinement of X-ray crystal structure. This method uses the normal modes of both internal and external motions to distinguish the real internal dynamics from the external terms such as lattice disorder, and gives an anisotropic and concerted picture of atomic fluctuations. The refinement is carried out with diffraction data of 5.0 to 1.8 A resolution, which are collected on an imaging plate. The results of the refinement show: (1) Debye-Waller factor consists of two parts, highly anisotropic internal fluctuations and almost isotropic external terms. The former is smaller than the latter by a factor of 0.72 in the scale of B-factor. Therefore, the internal dynamics cannot be recognized directly from the apparent electron density distribution. (2) The internal fluctuations show basically similar features as those predicted by the normal mode analysis, with almost the same amplitude and a similar level of anisotropy. (3) Correlations of fluctuations are detected between two lobes forming the active site cleft, which move simultaneously in opposite directions. This corresponds to the hinge-bending motion of lysozyme.  相似文献   

11.
The low temperature form of human alpha-lactalbumin (HAL) was crystallized from a 2H2O solution and its structure was refined to the R value of 0.119 at 1.15 A resolution by the full-matrix least-squares method. Average estimated standard deviations of atomic parameters for non-hydrogen atoms were 0.038 A for coordinates and 0.044 A2 for anisotropic temperature factors (Uij). The magnitude of equivalent isotropic temperature factors (Ueqv) was highly correlated with the distance from the molecular centroid and fitted to a quadratic equation as a function of atomic coordinates. The atomic thermal motion was rather isotropic in the core region and the anisotropy increased towards the molecular surface. The statistical analysis revealed the out-of-plane motion of main-chain oxygen atoms, indicating that peptide groups are in rotational vibration around a Calpha.Calpha axis. The TLS model, which describes the rigid-body motion in terms of translation, libration, and screw motions, was adopted for the evaluation of the molecular motion and the TLS parameters were determined by the least-squares fit to Uij. The reproduced Ueqvcal from the TLS parameters was in fair agreement with observed Ueqv, but differences were found in regions of residues, 5-22, 44-48, 70-75, and 121-123, where Ueqv was larger than Ueqvcal because of large local motions. To evaluate the internal motion of HAL, the contribution of the rigid-body motion was determined to be 42.4 % of Ueqv in magnitude, which was the highest estimation to satisfy the condition that the Uijint tensors of the internal motion have positive eigen values. The internal motion represented with atomic thermal ellipsoids clearly showed local motions different from those observed in chicken-type lysozymes which have a backbone structure very similar to HAL. The result indicates that the internal motion is closely related to biological function of proteins.  相似文献   

12.
Solvent-binding sites were compared in 10 different crystal forms of phage T4 lysozyme that were refined using data from 2.6 A to 1.7 A resolution. The sample included 18 crystallographically independent lysozyme molecules. Despite different crystallization conditions, variable crystal contacts, changes due to mutation, and varying attention to solvent during crystallographic refinement, 62% of the 20 most frequently occupied sites were conserved. Allowing for potential steric interference from neighboring molecules in the crystal lattice, this fraction increased to 79% of the sites. There was, however, no solvent-binding site that was occupied in all 18 lysozyme molecules. A buried double site was occupied in 17 instances and 2 other internal sites were occupied 15 times. Apart from these buried sites, the most frequently occupied sites were often at the amino-termini of alpha-helices. Solvent molecules at the most conserved sites tended to have crystallographic thermal factors lower than average, but atoms with low B-factors were not restricted to these sites. Although superficial inspection may suggest that only 50-60% (or less) of solvent-binding sites are conserved in different crystal forms of a protein, it appears that many sites appear to be empty either because of steric interference or because the apparent occupancy of a given site can vary from crystal to crystal. The X-ray method of identifying sites is somewhat subjective and tends to result in specification only of those solvent molecules that are well ordered and bound with high occupancy, even though there is clear evidence for solvent bound at many additional sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
14.
Abstract

Hinge-bending in T4 lysozyme has been inferred from single amino acid mutant crystalline allomorphs by Matthews and coworkers. This raises an important question: are the different conformers in the unit cell artifacts of crystal packing forces, or do they represent different solution state structures? The objective of this theoretical study is to determine whether domain motions and hinge-bending could be simulated in T4 lysozyme using molecular dynamics. An analysis of a 400 ps molecular dynamics simulation of the 164 amino acid enzyme T4 lysozyme is presented. Molecular dynamics calculations were computed using the Discover software package (Biosym Technologies). All hydrogen atoms were modeled explicitly with the inclusion of all 152 crystallographic waters at a temperature of 300 K. The native T4 lysozyme molecular dynamics simulation demonstrated hinge-bending in the protein. Relative domain motions between the N-terminal and C-terminal domains were evident. The enzyme hinge bending sites resulted from small changes in backbone atom conformations over several residues rather than rotation about a single bound. Two hinge loci were found in the simulation. One locus comprises residues 8–14 near the C-terminal of the A helix; the other site, residues 77–83 near the C-terminal of the C helix. Comparison of several snapshot structures from the dynamics trajectory clearly illustrates domain motions between the two lysozyme lobes. Time correlated atomic motions in the protein were analyzed using a dynamical cross-correlation map. We found a high degree of correlated atomic motions in each of the domains and, to a lesser extent, anticorrelated motions between the two domains. We also found that the hairpin loop in the N-terminal lobe (residues 19–24) acted as a mobile ‘flap’ and exhibited highly correlated dynamic motions across the cleft of the active site, especially with residue 142.  相似文献   

15.
M Hiebl  R Maksymiw 《Biopolymers》1991,31(2):161-167
The temperature dependence of the apparent expansibility of lysozyme and ovalbumin in solution has been measured as a function of pH. This temperature dependence is explained in terms of suppressed fluctuations in bound water due to the protein. It is shown that the thermal expansion coefficient of bound water is different from bulk water. The pH dependence can be explained by increased hydration of side chains at lower pH. The amount in volume of hydration water in a typical protein-water system varies from 0.16 to 0.7. How the intrinsic thermal expansion coefficient of proteins can be derived from the apparent quantity is discussed. Intrinsic values of the thermal expansion coefficient for lysozyme at room temperature are between 1.7 and 4.4 x 10(-4) K-1 for a 10% solution.  相似文献   

16.
The properties of crystalline protein materials are closely linked to crystal shape. However, the effective strategies for the shape control of protein crystals are lacking. The conventional sitting-drop vapor-diffusion method was employed to investigate the influence of pH and temperature on the crystal nucleation behavior of hen egg white lysozyme. Moreover, the size distributions of protein crystals grown at different conditions were analyzed. Differential scanning calorimetry was employed to evaluate the thermal stability of lysozyme crystals. The results indicated that pH and temperature will affect the supersaturation and electrostatic interactions among protein molecules in the nucleation process. In particular, the crystals with different aspect ratios can be selectively nucleated, depending upon the choice of pH and temperature. Therefore, this study provided a simple method for obtaining shape-controlled lysozyme crystals and supplied some information on thermal behaviors of lysozyme crystals grown at different pH values.  相似文献   

17.
Temperature dependence of partial volumes of proteins   总被引:1,自引:0,他引:1  
H B Bull  K Breese 《Biopolymers》1973,12(10):2351-2358
The change of the apparent partial specific volumes of egg albumin, bovine serum albumin, bovine methemoglobin, β-lactoglobulin, and lysozyme with temperature through the thermal transitions of the proteins have been measured with dilatometers. Four regions in the plot of the apparent partial specific volumes against temperature can be recognized: (1) linear sections extending from 25°C up to 45–50°C: (2) a decrease in slope between 50°C and 60°C; (3) a sharp increase in slope with increasing temperature coinciding with the appearance of heat coagulation of the protein and followed by (4) a decrease in the slope. The return of the protein samples to 25°C yields linear relations between the apparent partial specific volumes of the heat-denatured proteins and the decreasing temperature.  相似文献   

18.
The solvation of the antibody–antigen Fv D1.3–lysozyme complex is investigated through a study of the conservation of water molecules in crystal structures of the wild-type Fv fragment of antibody D1.3, 5 free lysozyme, the wild-type Fv D1.3–lysozyme complex, 5 Fv D1.3 mutants complexed with lysozyme and the crystal structure of an idiotope (Fv D1.3)-abti-idiotope (Fv E5.2) complex. In all, there are 99 water molecules common to the wild-type and mutant antibody–lysozyme complexes. The antibody–lysozyme interface includes 25 well-ordered solvent molecules, conserved among the wild-type and mutant Fv D1.3–lysozyme complexes, which are bound directly or through other water molecules to both antibody and antigen. In addition to contributing hydrogen bonds to the antibody–antigen interaction the solvent molecules fill many interface cavities. Comparison with x-ray crystal structures of free Fv D1.3 and free lysozyme shows that 20 of these conserved interface waters in the complex were bound to one of the free proteins. Uo to 23 additional water molecules are also found in the antibody–antigen interface, however these waters do no bridge antibody and antigen and their temperature factors are much higher than those of the 25 well-ordered waters. Fifteen water molecules are displaced to form the complex, some of which are substituted by hydrophilic protein atoms, and 5 water molecules are added at the antibody–antigen interface with the formation of the complex. While the current crystal models of the D1.3–lysozyme complex do not demonstrate the increase in bound waters found in a physico-chemical study of the interaction at decreased water activities, the 25 well-ordered interface water contribute a net gain of 10 hydrogen bonds to complex stability.  相似文献   

19.
20.
The lysozyme of bacteriophage φIN93 was purified to apparent homogeneity with Carboxymethyl Sepharose and Hydroxyapatie columns from lysates of the phage grown on Thermus aquaticus TZ2. The enzyme is a single polypeptide chain with a molecular weight of 33,000. From the determined N-terminal amio acids of the enzyme, the locus of the gene was specified on a φIN93 genome. The enzyme was not similar to egg white lysozyme, T4 phage lysozyme, or lambda phage lysozyme. The enzyme, φIN93 lysozyme, was found to be a novel type of thermophilic lysozyme, which lyses specifically Thermus sp. cells, and exhibited conspicuous thermal stability at 95 °C for 1 h in the presence of β-mercaptoethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号