首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Xenorhabdus nematophilus is an insect pathogen that lives in a symbiotic association with a specific entomopathogenic nematode. During prolonged culturing, variant cells arise that are deficient in numerous properties. To understand the genetic mechanism underlying variant cell formation, a transposon mutagenesis approach was taken. Three phenotypically similar variant strains of X. nematophilus, each of which contained a single transposon insertion, were isolated. The insertions occurred at different locations in the chromosome. The variant strain, ANV2, was further characterized. It was deficient in several properties, including the ability to produce antibiotics and the stationary-phase-induced outer membrane protein, OpnB. Unlike wild-type cells, ANV2 produced lecithinase. The emergence of ANV2 from the nematode host was delayed relative to the emergence of the parental strain. The transposon in ANV2 had inserted in a gene designated var1, which encodes a novel protein composed of 121 amino acid residues. Complementation analysis confirmed that the pleiotropic phenotype of the ANV2 strain was produced by inactivation of var1. Other variant strains were not complemented by var1. These results indicate that inactivation of a single gene was sufficient to promote variant cell formation in X. nematophilus and that disruption of genetic loci other than var1 can result in the same pleiotropic phenotype.  相似文献   

2.
Studies on the interaction of the insect pathogenic bacterium, Xenorhabdus nematophilus (Enterobacteriaceae), with its nematode and insect hosts would be greatly assisted if a luminescent phenotype were generated that would allow the detection of viable bacteria in vivo without the necessity for disruption of the cellular interactions. The plasmid, pMGM221, containing the luminescence gene (luxCDABE) of Vibrio harveyi was introduced into different strains (DD136 and 19061) and phases (one and two) of X. nematophilus by triparental mating. For reproducible and efficient conjugation, it was necessary to use older cultures (96-160 h) in the stationary phase of X. nematophilus for mating with relatively small differences (<2-fold) in transconjugant yield for the different strains and phases of X. nematophilus. All transconjugants emitted high levels of light with optimum bioluminescence at 27 degrees C in Luria broth at pH 8.0 containing 20 g/L NaCl; pH, osmolarity, and temperature conditions were similar to those encountered by the bacteria in the hemolymph of the larvae of Galleria mellonella. Plasmids were detected in the transconjugants after 6 months of subculturing the bacteria without antibiotic selection. Aside from light emission, luminescent transconjugants had the same physiological properties as the nonluminescent parental strains, including identical rates of growth, production of exoenzymes, removal from and subsequent emergence into the insect's hemolymph, bacterial-induced hemocyte damage, suppression of prophenoloxidase activation, and the ability to kill G. mellonella larvae. Light-emitting larvae could readily be detected by eye in a dark room, and all bacteria reisolated from dead larvae were luminescent. These properties validate the use of luminescent X. nematophilus not only as a means of following bacterial host interactions, but also as a potential agent to follow the infection and death of the insect population.  相似文献   

3.
Xenorhabdus spp., entomopathogenic bacteria symbiotically associated with nematodes of the family Steinernematidae, occur spontaneously in two phases. Phase I, the variant naturally isolated from the infective-stage nematode, provides better conditions than the phase II variant for nematode reproduction. This study has shown that Xenorhabdus phase I variants displayed a swarming motility when they were grown on a suitable solid medium (0.6 to 1.2% agar). Whereas most of the phase I variants from different Xenorhabdus spp. were able to undergo cycle of rapid and coordinately population migration over the surface, phase II variants were unable to swarm and even to swim in semisolid agar, particularly in X. nematophilus. Optical and electron microscopic observations showed nonmotile cells with phase II variants of X. nematophilus F1 which lost their flagella. Flagellar filaments from strain F1 phase I variants were purified, and the molecular mass of the flagellar structural subunit was estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to be 36.5 kDa. Flagellin from cellular extracts or culture medium of phase II was undetectable with antiserum against the denatured flagellin by immunoblotting analysis. This suggests that the lack of flagella in phase II cells is due to a defect during flagellin synthesis. The importance of such a difference of motility between both phases is discussed in regard to adaptation of these bacteria to the insect prey and the nematode host.  相似文献   

4.
Two bacterial symbionts of entomopathogenic nematodes, one of which originated from Texas, U.S.A., and the other from Newfoundland, Canada, were characterized phenotypically. These strains belonged to the genus Xenorhabdus. The Newfoundland (NF) strain was shown to be X. bovienii but the Texas (TX) strain was not identified at the species level. Four additional cultures of Xenorhabdus were included in the study. These were a strain of X. bovienii (Ume?), which was from a nematode of European origin, and strains of X. nematophilus, X. beddingii, and X. poinarii. The tests used in this study indicated identical properties for the NF (North American) and Ume? (European) strains of X. bovienii. These could be differentiated from the other strains studied by their failure to grow at 34 degrees C and resistance to low concentrations of a mixture of amoxilline and clavulanic acid. The Xenorhabdus TX strain could be differentiated from the other strains studied by its failure to grow at 10 degrees C. Of the tests done, approximately 30 were useful in distinguishing between the strains and species studied.  相似文献   

5.
We show that inactivation of envZ, the gene encoding the histidine kinase sensor protein, EnvZ, of Xenorhabdus nematophilus, affected the production of several outer membrane proteins (Opns). X. nematophilus produced five major Opns during exponential growth. Insertional inactivation of envZ led to a decrease in the production of OpnP, the OmpF-like pore-forming protein which constitutes approximately 50% of the total outer membrane protein in X. nematophilus. OpnA production was also reduced, while the remaining Opns were produced normally. During the transition to stationary phase, three new outer membrane proteins, OpnB, OpnS, and OpnX, were induced in the wild-type strain. The envZ-minus strain, ANT1, did not produce OpnB and OpnX, while OpnS was induced at markedly reduced levels. These results suggest that EnvZ was required for the high-level production of OpnP during exponential growth and may be involved in the production of OpnB, OpnS, and OpnX during stationary-phase growth. We also show that ANT1 was more pathogenic than the wild-type strain when as few as five cells were injected into the hemolymph of the larval stage of the tobacco hornworm (Manduca sexta). The larvae died before significant numbers of bacteria were detectable in the hemolymph. These results are discussed in relation to the role of EnvZ in the life cycle of X. nematophilus.  相似文献   

6.
The genetic transformation mutant Rd(DB117)rec- has a pleiotropic phenotype that includes reduced levels of phage recombination. Physical mapping experiments showed that this strain has a 78.5-kbp insertion in the rec-2 gene. The rec-2 dependence of phage recombination was reexamined to determine whether the defective phenotype in Rd(DB117)rec- was due to the simple disruption of the rec-2 gene or whether trans-acting factors from the inserted DNA were responsible. Analysis of strains with transposon insertions in the rec-2 gene showed that they were also defective for phage recombination. Therefore, the phage recombination defect was due solely to the disruption of the rec-2 gene. Strain KB6 is proficient for phage recombination but has a defect in genetic transformation resembling that of Rd(DB117)rec-. The transformation defect of KB6 could be complemented by the wild-type rec-2 gene, showing that the rec-2 contributions to genetic transformation and phage recombination were uncoupled in this strain. The rec-2-dependent phenotype of KB6 suggests that the rec-2 gene participates in genetic transformation and phage recombination in different ways.  相似文献   

7.
We have identified and cloned a novel toxin gene (tccC1/xptB1) from Xenorhabdus nematophilus strain isolated from Korea-specific entomophagous nematode Steinernema glaseri MK. The DNA sequence of cloned toxin gene (3048 bp) has an open reading frame encoding 1016 amino acids with a predicted molecular mass of 111058 Da. The toxin sequence shares 50-96% identical amino acid residues with the previously reported tccC1 cloned from X. nematophilus, Photorhabdus luminescens W14 P. luminescens TTO1, and Yersinia pestis CO92. The toxin gene was successfully expressed in Escherichia coli, and the recombinant toxin protein caused a rapid cessation in mortality of Galleria mellonella larvae (80% death of larvae within 2 days). Conclusively, the heterologous expression of the novel gene tccC1 cloned into E. coli plasmid vector produced recombinant toxin with high insecticidal activity.  相似文献   

8.
9.
Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.  相似文献   

10.
Induction by mitomycin or high-temperature treatment resulted in the production of bacteriocins and phages in both phases of Xenorhabdus nematophilus A24, indicating lysogeny. Phage DNA purified from X. nematophilus A24 hybridized to several fragments of DraI-digested A24 chromosomal DNA, confirming that the phage genome was incorporated into the bacterial chromosome. Bacteriocins and phages were detected in cultures of most other Xenorhabdus spp. after mitomycin or high-temperature treatment. Xenorhabdus luminescens K80 was not lysed by these treatments, and no phages were seen associated with this strain. However, bacteriocins were detected in limited quantities in all Xenorhabdus cultures, including X. luminescens K80, without any induction. X. nematophilus A24 bacteriocins were antagonistic for other Xenorhabdus species but not for A24 or other strains of X. nematophilus.  相似文献   

11.
Data from a study of both phases of 21 strains of Xenorhabdus examined for 240 characters were subjected to numerical analysis. Only 60 characters were used for the analyses, since 169 characters were common to all isolates, and the acidification data essentially duplicated the assimilation tests. The data were arranged in seven ways to determine the significance of characters affected by phase change and of weak responses. Most of the analyses involved calculation of similarities by the Jaccard coefficient and clustering by single linkage, complete linkage and centroid sorting algorithms. The resultant dendrograms emphasized the importance of recognizing phase-related characteristics in examining the taxonomy of Xenorhabdus. They also demonstrated a close correspondence between the taxonomic groupings of Xenorhabdus and those of their nematode associates. It is proposed that the subspecies of X. nematophilus be elevated to species, X. nematophilus, X. bovienii, X. poinarii and X. beddingii.  相似文献   

12.
NADH dehydrogenase-2 (NDH-2) from Escherichia coli respiratory chain is a membrane-bound cupric-reductase encoded by ndh gene. Here, we report that the respiratory system of a ndh deficient strain suffered a faster inactivation than that of the parental strain in the presence of tert-butyl hydroperoxide due to endogenous copper. The inactivation was similar for both strains when copper concentration increased in the culture media. Furthermore, several ndh deficient mutants grew less well than the corresponding parental strains in media containing either high or low copper concentrations. A mutant strain complemented with ndh gene almost recovered the parental phenotype for growing in copper limitation or excess. Then, NDH-2 gives the bacteria advantages to diminish the susceptibility of the respiratory chain to damaging effects produced by copper and hydroperoxides and to survive in extreme copper conditions. These results suggest that NDH-2 contributes in the bacterial oxidative protection and in the copper homeostasis.  相似文献   

13.
N-beta-Hydroxybutanoyl homoserine lactone (HBHL), the autoinducer of the luminescent system of Vibrio harveyi, has been identified as the first small compound to restore virulence to avirulent mutants of Xenorhabdus nematophilus. HBHL stimulated the level of lipase activity excreted by avirulent X. nematophilus and lowered the phenoloxidase activity in the hemolymph of insects infected with X. nematophilus, parameters that are both associated with insect pathogenesis. Moreover, mortality of the insects infected with avirulent X. nematophilus was restored upon injection with HBHL. Chloroform extraction of medium conditioned with wild-type but not avirulent X. nematophilus led to the isolation of a compound with the same chromatographic mobility as HBHL as well as the ability to stimulate the luminescence of a dim autoinducer-dependent mutant of V. harveyi. Transfer of the V. harveyi lux operon into avirulent and wild-type X. nematophilus generated dim and bright luminescent strains, respectively, which responded to HBHL and an agonist and antagonist in a manner analogous to their effects on the luminescence of dim autoinducer-deficient and bright wild-type strains of V. harveyi, indicating that similar HBHL-dependent regulatory systems exist in these two bacterial species.  相似文献   

14.
Pleiotropic Menaquinone-Deficient Mutant of Bacillus subtilis   总被引:4,自引:4,他引:0  
A multiple aromatic amino acid auxotroph of Bacillus subtilis 168 has been isolated which is unable to synthesize menaquinone-7 (MK-7) unless supplied with shikimic acid (SHK). The mutant, RB163, was isolated by selecting for resistance to low levels (1.5 mug/ml) of kanamycin. Enzymatic and genetic analyses show that the strain is an aroD mutant lacking 5-dehydroshikimate reductase. Under growth conditions in which its MK-7 deficiency is expressed, RB163 is deficient in cytochromes a, b, and c, exhibits low growth yields, and does not sporulate. Genetic analysis indicates that this pleiotropic phenotype is the result of a single genetic event. All phenotypic characteristics are reversible when the mutant is grown under conditions such that MK is synthesized. Comparison of strain RB163 with other aro mutants blocked before SHK ("early-aro" mutants) reveals interesting differences. Most early-aro mutants are cytochrome- and MK-sufficient, sporogenous, and sensitive to kanamycin when grown in the absence of SHK. However, in addition to strain RB163, two other aro mutants were found to show the pleiotropic phenotype. These three mutants have in common, and differ from other early-aro strains in, the inability to synthesize MK. It is suggested that the phenotypically wild-type aro mutants are bradytrophic, allowing enough substrate flow through the common aromatic pathway to satisfy the MK requirement. The pleiotropic mutants are thought to be completely blocked in the common pathway, thus accounting for their inability to synthesize MK.  相似文献   

15.
ABSTRACT: BACKGROUND: Clostridium difficile is the main cause of antibiotic associated diarrhea. In the past decade, the number of C. difficile patients has increased dramatically, coinciding with the emergence of two PCR ribotypes, 027 and 078. PCR ribotype 078 is also frequently found during C. difficile outbreaks in pigfarms. Previously, the genome of the PCR ribotype 078 strain M120, a human isolate, was described to contain a unique insert of 100 kilobases. RESULTS: Analysis of this insert revealed over 90 open reading frames, encoding proteins originating from transposons, phages and plasmids. The insert was shown to be a transposon (Tn6164), as evidenced by the presence of an excised and circularised molecule, containing the ligated 5'and 3'ends of the insert. Transfer of the element could not be shown through filter-mating experiments. Whole genome sequencing of PCR ribotype 078 strain 31618, isolated from a diarrheic piglet, showed that Tn6164 was not present in this strain. To test the prevalence of Tn6164, a collection of 231 Clostridium difficile PCR ribotype 078 isolates from human (n = 173) and porcine (n = 58) origin was tested for the presence of this element by PCR. The transposon was present in 9 human, tetracycline resistant isolates, originating from various countries in Europe, and none of the pig strains. Nine other strains, also tetracycline resistant human isolates, contained half of the transposon, suggesting multiple insertion steps yielding the full Tn6164. Other PCR ribotypes (n = 66) were all negative for the presence of the transposon. Multi locus variable tandem repeat analysis revealed genetic relatedness among transposon containing isolates. Although the element contained several potential antibiotic resistance genes, it did not yield a readily distinguishable phenotype. CONCLUSIONS: Tn6164 is a newly described transposon, occurring sporadically in C. difficile PCR ribotype 078 strains. Although no transfer of the element could be shown, we hypothesize that the element could serve as a reservoir of antibiotic resistance genes for other bacteria. Further research is needed to investigate the transfer capabilities of the element and to substantiate the possible role of Tn6164 as a source of antibiotic resistance genes for other gut pathogens.  相似文献   

16.
A line with the mosaic expression of the white+ transgene was obtained by inducing transposition of the AR4-24P[white, rosy] transposon and was used for the second round of induction. As a result, 57 lines with the mosaic eye pigmentation were obtained. In situ hybridization and Southern blotting showed that genomic DNA fragments flanking AR4-24 were, in some cases, transposed together with the transposon. A spontaneous loss of these fragments resulted in reversion to the wild-type phenotype. The mosaic eye pigmentation in a line that carried the AR4-24 transposon flanked with the same fragments in region 24D1-2 was not affected by the Su(var)3-6 gene modifying position effect variegation (PEV). Other PEV modifiers, Su(var)3-9 and Su(var)2-5, had only a slight effect on PEV; Su(var)3-7 restored the wild-type phenotype. The genomic fragments captured by the transposon may contain DNA sequences that autonomously induce mosaic PEV of the white gene.  相似文献   

17.
We investigated the ability of the transposable element Tc1 to excise from the genome of the nematode Caenorhabditis elegans var. Bristol N2. Our results show that in the standard lab strain (Bristol), Tc1 excision occurred at a high frequency, comparable to that seen in the closely related Bergerac strain BO. We examined excision in the following way. We used a unique sequence flanking probe (pCeh29) to investigate the excision of Tc1s situated in the same location in both strains. Evidence of high-frequency excision from the genomes of both strains was observed. The Tc1s used in the first approach, although present in the same location in both genomes, were not known to be identical. Thus, a second approach was taken, which involved the genetic manipulation of a BO variant, Tc1(Hin). The ability of this BO Tc1(Hin) to excise was retained after its introduction into the N2 genome. Thus, we conclude that excision of Tc1 from the Bristol genome occurs at a high frequency and is comparable to that of Tc1 excision from the Bergerac genome. We showed that many Tc1 elements in N2 were apparently functionally intact and were capable of somatic excision. Even so, N2 Tc1s were prevented from exhibiting the high level of heritable transposition displayed by BO elements. We suggest that Bristol Tc1 elements have the ability to transpose but that transposition is heavily repressed in the gonadal tissue.  相似文献   

18.
Random transposon mutagenesis is the strategy of choice for associating a phenotype with its unknown genetic determinants. It is generally performed by mobilization of a conditionally replicating vector delivering transposons to recipient cells using broad-host-range RP4 conjugative machinery carried by the donor strain. In the present study, we demonstrate that bacteriophage Mu, which was deliberately introduced during the original construction of the widely used donor strains SM10 λpir and S17-1 λpir, is silently transferred to Escherichia coli recipient cells at high frequency, both by hfr and by release of Mu particles by the donor strain. Our findings suggest that bacteriophage Mu could have contaminated many random-mutagenesis experiments performed on Mu-sensitive species with these popular donor strains, leading to potential misinterpretation of the transposon mutant phenotype and therefore perturbing analysis of mutant screens. To circumvent this problem, we precisely mapped Mu insertions in SM10 λpir and S17-1 λpir and constructed a new Mu-free donor strain, MFDpir, harboring stable hfr-deficient RP4 conjugative functions and sustaining replication of Π-dependent suicide vectors. This strain can therefore be used with most of the available transposon-delivering plasmids and should enable more efficient and easy-to-analyze mutant hunts in E. coli and other Mu-sensitive RP4 host bacteria.  相似文献   

19.
Aspergillus fumigatus is an important medical pathogen that lacks a known sexual cycle. Transposons may provide an important mechanism for the generation of genetic diversity in this organism. Here, we describe Taf1, the first class II transposon to be identified in A. fumigatus. Taf1, a member of the mariner superfamily and pogo family of transposons, is distinguished by the presence of extremely long (89 bp) inverted repeats that flank the transposase coding sequence. Taf1 is present in different locations and copy number among clinical strains of A. fumigatus and is transcribed. Analysis of multiple insertion sequences within a single strain suggests that Taf1 elements undergo inactivation by a repeat induced polymorphism-like mechanism. Taf1 insertion patterns were extremely stable despite multiple stressors including heat shock, serial passage, and infection in mice. Thus Taf1 may be useful for strain identification and molecular typing.  相似文献   

20.
The inactivation of a genetic determinant critical for streptolysin S production was accomplished by transfer and insertion of the transposon Tn916 into the DNA of a group A streptococcal strain. The group D strain CG110 was able to efficiently transfer Tn916 into the group A strain CS91 when donor and recipient cells were concentrated and incubated together on membrane filters. Among tetracycline-resistant transconjugants, nonhemolytic mutants that no longer produced streptolysin S and retained the capacity to produce streptolysin O were discovered. Hemolytic revertants from these mutants regained tetracycline sensitivity; other revertants still retained a tetracycline resistance phenotype. Hybridization studies employing Tn916 DNA located Tn916 sequences in EcoRI and HindIII fragments of DNA from mutants devoid of streptolysin S; one carried a single copy of Tn916, and the other two carried multiple copies of the transposon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号