首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whole cells of Escherichia coli overexpressing a glucosyltransferase from Vitis vinifera were used for the glucosylation of geraniol to geranyl glucoside. A high cell density cultivation process for the production of whole-cell biocatalysts was developed, gaining a dry cell mass concentration of up to 67.6 ± 1.2 g L?1 and a glucosyltransferase concentration of up to 2.7 ± 0.1 g protein L?1 within a process time of 48 h. Whole-cell batch biotransformations in milliliter-scale stirred-tank bioreactors showed highest conversion of geraniol at pH 7.0 although the pH optimum of the purified glucosyltransferase was at pH 8.5. The biocatalytic batch process performance was improved significantly by the addition of a water-immiscible ionic liquid (N-hexylpyridinium bis(trifluoromethylsulfonyl)imid) for in situ substrate supply. The so far highest final geranyl glucoside concentration (291 ± 9 mg L?1) and conversion (71 ± 2 %) reported for whole-cell biotransformations of geraniol were achieved with 5 % (v/v) of the ionic liquid.  相似文献   

2.
Total incorporation of exogenously administered [2-14C]acetate into essential oil of palmarosa (Cymbopogon martinii) was found to be relatively higher than that of either [U-14C]sucrose or [U-14C]glucose during inflorescence development. Among the major essential oil constituents, biogenesis of geranyl acetate was much higher than that of geraniol. Alkaline hydrolysis of [14C]labeled geranyl acetate revealed that the majority of the label incorporated into geranyl acetate was present in the geraniol moiety, indicating that only newly synthesized geraniol gets acetylated to form geranyl acetate. Geranyl acetate cleaving esterase (GAE) activity followed a similar pattern during both in vivo and in vitro inflorescence development, with maximum activity at immature inflorescence stages, suggesting the involvement of GAE in geraniol production during inflorescence development. Five esterase isozymes (Est-A to E) were detected in the enzymic fraction of palmarosa inflorescence and all showed GAE activity, with Est-B being significantly increased during inflorescence development. The role of GAE in geraniol production and improving the palmarosa oil quality is discussed.  相似文献   

3.
Geraniol was injected into the core of Jonathan apples susceptible to storage breakdown. It was rapidly metabolized to geranyl β-d-glucoside which was transported to the flesh and metabolized into other compounds. When geraniol was injected into the flesh and prevented from diffusing into the core area, metabolism of geraniol was completely inhibited. The results suggest that some factor associated with the apple seeds is involved in the formation of the glucoside and hence with the induction of breakdown.  相似文献   

4.
This study reports the maximization of geranyl oleate production by esterification of geraniol and oleic acid in a solvent-free system using a commercial lipase as catalyst. The operating conditions that maximized geranyl oleate production were determined to be 40?°C, geraniol to oleic acid molar ratio of 5:1, 150?rpm and 10?wt% of enzyme, with a resulting reaction conversion of about 93%. After determining the best reaction parameters, a kinetic study was performed and the results obtained in this step allow to conclude that an excess of alcohol (alcohol to acid molar ratio of 5:1), relatively low enzyme concentration (5?wt%) and temperature of 50?°C afforded nearly complete reaction conversion after 1?h of reaction. New experimental data on enzymatic esterification of geraniol and oleic acid for geranyl oleate production are reported in this work, showing a promising perspective of the technique to overcome the inconvenience of the chemical-catalyzed route.  相似文献   

5.
《Phytochemistry》1987,26(8):2207-2212
The essential oil from the fresh rhizome of Zingiber officinale was characterized by the presence of acyclic oxygenated monoterpenes mainly composed of neral, geraniol, geranial and geranyl acetate. During storage the content of neral and geranial in the rhizome increased to ca 60% of the essential oil, while the content of geraniol and geranyl acetate decreased to an undetectable amount. The change resulted from the conversion of geranyl acetate into geraniol, geranial and neral, successively. The content of geranial and neral decreased to a small extent through cultivation of the stored rhizome, whereas a large quantity of geraniol and geranyl acetate occurred in the newly propagated fresh rhizome.  相似文献   

6.
This study reports the maximization of geranyl oleate production by esterification of geraniol and oleic acid in a solvent-free system using a commercial lipase as catalyst. The operating conditions that maximized geranyl oleate production were determined to be 40 °C, geraniol to oleic acid molar ratio of 5:1, 150 rpm and 10 wt% of enzyme, with a resulting reaction conversion of about 93%. After determining the best reaction parameters, a kinetic study was performed and the results obtained in this step allow to conclude that an excess of alcohol (alcohol to acid molar ratio of 5:1), relatively low enzyme concentration (5 wt%) and temperature of 50 °C afforded nearly complete reaction conversion after 1 h of reaction. New experimental data on enzymatic esterification of geraniol and oleic acid for geranyl oleate production are reported in this work, showing a promising perspective of the technique to overcome the inconvenience of the chemical-catalyzed route.  相似文献   

7.
Palmarosa inflorescence with partially opened spikelets is biogenetically active to incorporate [U-14C]sucrose into essential oil. The percent distribution of14C-radioactivity incorporated into geranyl acetate was relatively higher as compared to that in geraniol, the major essential oil constituent of palmarosa. At the partially opened spikelet stage, more of the geraniol synthesized was acetylated to form geranyl acetate, suggesting that majority of the newly synthesized geraniol undergoes acetylation, thus producing more geranyl acetate.In vitro development of palmarosa inflorescence, fed with [U-14C]sucrose, resulted in a substantial reduction in percent label from geranyl acetate with a corresponding increase in free geraniol, thereby suggesting the role of an esterase in the production of geraniol from geranyl acetate. At time course measurement of14CO2 incorporation into geraniol and geranyl acetate substantiated this observation. Soluble acid invertase was the major enzyme involved in the sucrose breakdown throughout the inflorescence development. The activities of cell wall bound acid invertase, alkaline invertase and sucrose synthase were relatively lower as compared to the soluble acid invertase. Sucrose to reducing sugars ratio decreased till fully opened spikelets stage, concomitant with increased acid invertase activity and higher metabolic activity. The phenomenon of essential oil biosynthesis has been discussed in relation to changes in these physiological parameters.  相似文献   

8.
Dubey VS  Luthra R 《Phytochemistry》2001,57(5):675-680
Only immature palmarosa (Cymbopogon martinii, Roxb. wats. var. motia) inflorescence with unopened spikelets accumulated essential oil substantially. Geraniol and geranyl acetate together constituted about 90% of the palmarosa oil. The proportion of geranyl acetate in the oil decreased significantly with a corresponding increase of geraniol, during inflorescence development. An esterase enzyme activity, involved in the transformation of geranyl acetate to geraniol, was detected from the immature inflorescence using a gas chromatographic procedure. The enzyme, termed as geranyl acetate cleaving esterase (GAE), was found to be active in the alkaline pH range with the optimum at pH 8.5. The catalysis of geranyl acetate was linear up to 6 h, and after 24 h of incubation, 75% of the geranyl acetate incubated was hydrolyzed. The GAE enzymic preparation, when stored at 4 degrees C for a week, was quite stable with only 40% loss of activity. The physiological role of GAE in the production of geraniol during palmarosa inflorescence development has been discussed.  相似文献   

9.
From the unsaponifiable fraction (63 g) of linseed oil (25 kg), two terpenic alcohols were isolated by alumina column, thin-layer, and gas-liquid chromatography. They were identified as phytol and geranyl geraniol (a precursor of bi- and tricyclic diterpenes) by infrared and nuclear magnetic resonance spectroscopy, ozonolysis, and mass spectrometry.  相似文献   

10.
Monoterpene geraniol, a compound obtained from aromatic plants, has wide applications. In this study, geraniol was synthesized in Saccharomyces cerevisiae through the introduction of geraniol synthase. To increase geraniol production, the mevalonate pathway in S. cerevisiae was genetically manipulated to enhance the supply of geranyl diphosphate, a substrate used for the biosynthesis of geraniol. Identification and optimization of the key regulatory points in the mevalonate pathway in S. cerevisiae increased geraniol production to 36.04 mg L−1. The results obtained revealed that the IDI1-encoded isopentenyl diphosphate isomerase is a rate-limiting enzyme in the biosynthesis of geraniol in S. cerevisiae, and overexpression of MAF1, a negative regulator in tRNA biosynthesis, is another effective method to increase geraniol production in S. cerevisiae.  相似文献   

11.
Cell-free homogenates from sage (Salvia officinalis) leaves convert dimethylallyl pyrophosphate and isopentenyl pyrophosphate to a mixture of geranyl pyrophosphate, farnesyl pyrophosphate, and geranylgeranyl pyrophosphate, with farnesyl pyrophosphate predominating. These prenyltransferase activities were localized primarily in the soluble enzyme fraction, and separation of this preparation on Sephadex G-150 revealed the presence of a partially resolved, labile geranyl pyrophosphate synthase activity. The product of the condensation reaction between [1-14C]dimethylallyl pyrophosphate and [1-3H]isopentenyl pyrophosphate was verified as [14C,1-3H]geranyl pyrophosphate by TLC isolation, enzymatic hydrolysis to geraniol, degradative studies, and the preparation of the crystalline diphenylurethane. The cis-isomer, neryl pyrophosphate, was not a product of the enzymatic reaction. By employing a selective tissue extraction procedure, the geranyl pyrophosphate synthase activity was localized in the leaf epidermal glands, the site of monoterpene biosynthesis, suggesting that the role of this enzyme is to supply the C10 precursor for the production of monoterpenes. Glandular extracts enriched in geranyl pyrophosphate synthase were partially purified by a combination of hydrophobic interaction chromatography on phenyl-Sepharose and gel permeation chromatography on Sephadex G-150. Substrate and product specificity studies confirmed the selective synthesis of geranyl pyrophosphate by this enzyme, which was also characterized with respect to molecular weight, pH optimum, cation requirement, inhibitors, and kinetic parameters, and shown to resemble other prenyltransferases.  相似文献   

12.
The production of lypolitic moulds in solid state fermentation was studied.Aspergillus oryzae andRhizopus oryzae were grown on rice hulls using different media. Tween 80 and olive oil were employed as main carbon sources; the whole solid cultures were lyophilised and employed in heptane for catalysing the formation of various geranyl esters with molar conversions ranging from 40 to 95%, under optimised conditions, starting from 50 mM geraniol and equimolar amount of the acid.  相似文献   

13.
14.
Rohloff J 《Phytochemistry》2002,59(6):655-661
Terpenes and aroma volatiles from rhizomes of Rhodiola rosea L. from Norway have been isolated by both steam distillation and headspace solid-phase micro-extraction coupled with gas chromatography and mass spectrometry analysis. The dried rhizomes contained 0.05% essential oil with the main chemical classes: monoterpene hydrocarbons (25.40%), monoterpene alcohols (23.61%) and straight chain aliphatic alcohols (37.54%). n-Decanol (30.38%), geraniol (12.49%) and 1,4-p-menthadien-7-ol (5.10%) were the most abundant volatiles detected in the essential oil, and a total of 86 compounds were identified in both the SD and HS-SPME samples. Geraniol was identified as the most important rose-like odour compound besides geranyl formate, geranyl acetate, benzyl alcohol and phenylethyl alcohol. Floral notes such as linalool and its oxides, nonanal, decanal, nerol and cinnamyl alcohol highlight the flowery scent of rose root rhizomes.  相似文献   

15.
Geraniol is a valuable monoterpene extensively used in the fragrance, food, and cosmetic industries. Increasing environmental concerns and supply gaps have motivated efforts to advance the microbial production of geraniol from renewable feedstocks. In this study, we first constructed a platform geraniol Escherichia coli strain by bioprospecting the key enzymes geranyl diphosphate synthase (GPPS) and geraniol synthase (GES) and selection of a host cell background. This strategy led to a 46.4-fold increase in geraniol titer to 964.3 mg/L. We propose that the expression level of eukaryotic GES can be further optimized through fusion tag evolution engineering. To this end, we manipulated GES to maximize flux towards the targeted product geraniol from precursor geranyl diphosphate (GPP) via the utilization of fusion tags. Additionally, we developed a high-throughput screening system to monitor fusion tag variants. This common plug-and-play toolbox proved to be a robust approach for systematic modulation of protein expression and can be used to tune biosynthetic metabolic pathways. Finally, by combining a modified E1* fusion tag, we achieved 2124.1 mg/L of geraniol in shake flask cultures, which reached 27.2% of the maximum theoretical yield and was the highest titer ever reported. We propose that this strategy has set a good reference for enhancing a broader range of terpenoid production in microbial cell factories, which might open new possibilities for the bio-production of other valuable chemicals.  相似文献   

16.
The essential oil of rose-scented geranium (Pelargonium species, family: Geraniaceae) obtained through steam or water plus steam distillation of shoot biomass is extensively used in the fragrance industry and in aromatherapy. During distillation, a part of the essential oil becomes dissolved in the distillation water (hydrosol) and is lost as this hydrosol is discarded. In this investigation, hydrosol was shaken for 30 min with hexane (10:1 proportion) and the hexane was distilled to yield 'secondary' or 'recovered' essential oil. The chemical composition of secondary oil was compared with that of 'primary' oil (obtained directly by distilling shoot biomass of the crop). Primary oil accounted for 93.0% and secondary oil 7.0% of the total oil yield (100.2 ml from 100 kg green shoot biomass). Fifty-two compounds making up 95.0-98.5% of the primary and the secondary oils were characterized through gas chromatography (GC) and gas chromatography-mass spectroscopy (GC--MS). Primary oil was richer in hydrocarbons (8.5-9.4%), citronellyl formate (6.2-7.5%), geranyl formate (4.1-4.7%), citronellyl propionate (1.0-1.2%), alpha-selinene (1.8-2.2%), citronellyl butyrate (1.4-1.7%), 10-epi-gamma-eudesmol (4.9-5.5%) and geranyl tiglate (1.8-2.1%). Recovered oil was richer in organoleptically important oxygenated compounds (88.9-93.9%), commercial rhodinol fraction (74.3-81.2%), sabinene (0.4-6.2%), cis-linool oxide (furanoid) (0.7-1.2%), linalool (14.7-19.6%), alpha-terpineol (3.3-4.8%) and geraniol (21.3-38.4%). Blending of recovered oil with primary oil is recommended to enhance the olfactory value of the primary oil of rose-scented geranium. Distillation water stripped of essential oil through hexane extraction can be recycled for distilling the next batch of rose-scented geranium.  相似文献   

17.
Two oxygen-containing monoterpene substrates, menthol or geraniol (25 mg l−1), were added to Anethum graveolens hairy root cultures to evaluate the influence of the biotransformation capacity on growth and production of volatile compounds. Growth was assessed by the dissimilation method and by fresh and dry weight measurement. The volatiles were analyzed by GC and GC–MS. The total constitutive volatile component was composed, in more than 50%, by falcarinol (17–52%), apiole (11–24%), palmitic acid (7–16%), linoleic acid (4–9%), myristicin (4-8%) and n-octanal (2-5%). Substrate addition had no negative influence on growth. The relative amount of menthol quickly decreased 48 h after addition, and the biotransformation product menthyl acetate was concomitantly formed. Likewise, the added geraniol quickly decreased over 48 h alongside with the production of the biotransformation products. The added geraniol was biotransformed in 10 new products, the alcohols linalool, α-terpineol and citronellol, the aldehydes neral and geranial, the esters citronellyl, neryl and geranyl acetates and linalool and nerol oxides. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Response surface methodology (RSM) and five-level, five-variable central composite rotatable design (CCRD) were used to evaluate the effects of synthetic variables, such as reaction time (1-9 h), temperature (25-65 degrees C), enzyme amount (10-50%), substrate molar ratio of geraniol to tributyrin (1:0.33-1:1), and added water amount (0-20%) on molar percent yield of geranyl butyrate, using lipase AY from Candida rugosa. Reaction time and temperature were the most important variables and substrate molar ratio had no effect on percent molar conversion. Based on contour plots, optimum conditions were: reaction time 9 h, temperature 35 degrees C, enzyme amount 50%, substrate molar ratio 1:0.33, and added water 10%. The predicted value was 100% and actual experimental value was 96.8% molar conversion. (c) 1996 John Wiley & Sons, Inc.  相似文献   

19.
A new type of bioreactor for air pollution control has been developed. The new process relies on an organic-phase emulsion and actively growing pollutant-degrading microorganisms, made into a foam with the air being treated. This new reactor is referred to as a foamed emulsion bioreactor (FEBR). As there is no packing in the reactor, the FEBR is not subject to clogging. Mathematical modeling of the process and proof of concept using a laboratory prototype revealed that the foamed emulsion bioreactor greatly surpasses the performance of existing gas-phase bioreactors. Experimental results showed a toluene elimination capacity as high as 285 g(toluene) m(-3) (reactor) h(-1) with a removal efficiency of 95% at a gas residence time of 15 s and a toluene inlet concentration of 1-1.3 g x m(-3). Oxygen limited the reactor performance at toluene concentration above about 0.7-1.0 g x m(-3); consequently, performance was significantly improved when pure oxygen was added to the contaminated air. The elimination capacity increased from 204 to 408 g x m(-3) h(-1) with >77% toluene removal at toluene inlet concentrations of 2-2.2 g x m(-3). Overall, the results show that the performance of the FEBR far exceeds that of currently used bioreactors for air pollution control.  相似文献   

20.
The objective of the present work was to study the kinetics of the solvent-free synthesis of geranyl acetate by a novel lipase (activity 60 U g?1) made by immobilization of lipase from Rhizopus oligosporous NRRL 5905 on to cross-linked silica gel. Transesterification was performed with vinyl acetate as the acyl donor. Vinyl acetate was used in large excess compared to geraniol, which made the reaction pseudo first order with respect to geraniol and the reaction rate followed Michaelis–Menten kinetics for a single substrate. To obtain the highest yield for geranyl acetate, various relevant physical parameters such as shaking speed, reaction time, enzyme concentration, initial water amount and reaction temperature that influence the activity of lipase were investigated. A maximum molar conversion of 67% was achieved after 48 h of reaction at 30°C, at an enzyme concentration of 25% w/v of reaction mixture. Substrate conversion remained constant for five successive cycles; thereafter the conversion dropped by only 11%. Using a pseudo first-order kinetic model for geranyl acetate synthesis in the absence of organic solvents, apparent Km and Vmax values were evaluated as 60 mM and 141 µmol g?1 h?1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号