首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nonporous and mesoporous silica-coated magnetite cluster nanocomposites particles were fabricated with various silica structures in order to develop a desired carrier for the lipase immobilization and subsequent biodiesel production. Lipase from Pseudomonas cepacia was covalently bound to the amino-functionalized particles using glutaraldehyde as a coupling agent. The hybrid systems that were obtained exhibited high stability and easy recovery regardless of the silica structure, following the application of an external magnetic field. The immobilized lipases were then used as the recoverable biocatalyst in a transesterification reaction to convert the soybean oil to biodiesel with methanol. Enzyme immobilization led to higher stabilities and conversion values as compared to what was obtained by the free enzyme. Furthermore, the silica structure had a significant effect on stability and catalytic performance of immobilized enzymes. In examining the reusability of the biocatalysts, the immobilized lipases still retained approximately 55% of their initial conversion capability following 5 times of reuse.  相似文献   

2.
Candida sp. 99-125 lipase immobilized on textile membrane was pretreated with several methods to improve its activity and methanol tolerance for biodiesel production. Lipase pretreatments with short chain alcohols from n-propyl alcohol to isobutyl alcohol did not have any positive effect on the lipase activity and methanol tolerance. While lipase treated with methanol solutions from 10 to 20% volume concentrations did enhance the enzyme activity and methanol tolerance, and this lipase activation effect did not exist when methanol volume concentration was 40%. 1 mM salt solutions of (NH4)2SO4, CaCl2, KCl, K2SO4 and MgCl2 pretreatments were the useful tools to improve the lipase activity and methanol tolerance. The reason might be that salts could incorporate with the protein molecular to form a more stable molecular to resist conformation change induced by high methanol concentration. The operational stability of pretreated lipase was improved dramatically for biodiesel production during batch reactions.  相似文献   

3.
Lipase from Rhizopus oryzae (ROL) was immobilized as crosslinked enzyme aggregate (CLEA) via precipitation with ammonium sulfate and simultaneous crosslinking with glutaraldehyde. The optimum conditions of the immobilization process were determined. Lipase CLEAs showed a twofold increase in activity when Tween 80‐pretreated lipase was used for CLEA preparation. CLEAs were shown to have several advantages compared to free lipase. CLEAs were more stable at 50°C and 60°C as well as for a wide range of pH. After incubation at 50°C, CLEA showed 74% of initial activity whereas free enzyme was totally inactivated. Reduction of Schiff bases has been performed for the first time in the CLEA preparation process significantly improving the chemically modified CLEAs' reusability, thus providing an enzyme with high potential for recycling even under aqueous reaction conditions where enzyme leakage is, in general, one of the major problems. The CLEA retained 91% activity after 10 cycles in aqueous medium. The immobilized enzyme was used for kinetic resolution reactions. Results showed that immobilization had an enhancing effect on the conversion (c) as well as on the enantiomeric ratio (E). ROL CLEA displayed five times higher enantioselectivity for the hydrolysis of (R,S)‐1‐phenylethyl acetate and likewise 1.5 times higher enantioselectivity for the transesterification of racemic (RS)‐1‐phenylethanol with vinylacetate. © 2012 American Institute of Chemical Engineers Biotechnol. Prog., 28: 937–945, 2012 This article was published online on June 26, 2012. An edit was subsequently requested. This notice is included in the online and print versions to indicate that both have been corrected [27 June 2012].  相似文献   

4.
Enzymatic transesterification of soybean oil with methanol and ethanol was studied. Of the nine lipases that were tested in the initial screening, lipase PS from Pseudomonas cepacia resulted in the highest yield of alkyl esters. Lipase from Pseudomonas cepacia was further investigated in immobilized form within a chemically inert, hydrophobic sol-gel support. The gel-entrapped lipase was prepared by polycondensation of hydrolyzed tetramethoxysilane and iso-butyltrimethoxysilane. Using the immobilized lipase PS, the effects of water and alcohol concentration, enzyme loading, enzyme thermal stability, and temperature in the transesterification reaction were investigated. The optimal conditions for processing 10 g of soybean oil were: 35 degrees C, 1:7.5 oil/methanol molar ratio, 0.5 g water and 475 mg lipase for the reactions with methanol, and 35 degrees C, 1:15.2 oil/ethanol molar ratio, 0.3 g water, 475 mg lipase for the reactions with ethanol. Subject to the optimal conditions, methyl and ethyl esters formation of 67 and 65 mol% in 1h of reaction were obtained for the immobilized enzyme reactions. Upon the reaction with the immobilized lipase, the triglycerides reached negligible levels after the first 30 min of the reaction and the immobilized lipase was consistently more active than the free enzyme. The immobilized lipase also proved to be stable and lost little activity when was subjected to repeated uses.  相似文献   

5.
Biodiesel production by immobilized Rhizopus oryzae lipase in magnetic chitosan microspheres (MCMs) was carried out using soybean oil and methanol in a magnetically-stabilized, fluidized bed reactor (MSFBR). The maximum content of methyl ester in the reaction mixture reached 91.3 (w/v) at a fluid flow rate of 25 ml/min and a magnetic field intensity of 150 Oe. In addition, the MCMs-immobilized lipase in the reactor showed excellent reusability, retaining 82 % productivity even after six batches, which was much better than that in a conventional fluidized bed reactor. These results suggested that a MSFRB using MCMs-immobilized lipase is a promising method for biodiesel production.  相似文献   

6.
In this study, the methyl esters of the long chain fatty acids (biodiesel) were synthesized by methanolysis of canola oil by immobilized lipase. Lipase from Thermomyces lanuginosus was immobilized by both physical adsorption and covalent attachment onto polyglutaraldehyde activated styrene–divinylbenzene (STY–DVB) copolymer, which is synthesized by using high internal phase emulsion (polyHIPE). Two different STY–DVB copolymers were evaluated: STY–DVB copolymer and STY–DVB copolymer containing polyglutaraldehyde (STY–DVB–PGA). Lipase from T. lanuginosus was immobilized with 60% and 85% yield on the hydrophobic microporous STY–DVB and STY–DVB–PGA copolymer, respectively. Biodiesel production using the latter lipase preparation was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 97% at 50 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

7.
Lipase (EC 3.1.1.3) is a tri-acylglycerol ester hydrolase, catalysing the hydrolysis of tri-, di-, and mono-acylglycerols to glycerol and fatty acids. To study the effect of adsorption of a lipase obtained from Bacillus coagulans BTS-1, its lipase was immobilized on native and activated (alkylated) matrices, i.e. silica and celite. The effect of pH, temperature, detergents, substrates, alcohols, organic solvent etc. on the stability of the immobilized enzyme was evaluated. The gluteraldahyde or formaldehyde (at 1% and 2% concentration, v/v) activated matrix was exposed to the Tris buffered lipase. The enzyme was adsorbed/entrapped more rapidly on to the activated silica than on the activated celite. The immobilized lipase showed optimal activity at 50 degrees C following one-hour incubation. The lipase was specifically more hydrolytic to the medium C-length ester (p-nitro phenyl caprylate than p-nitro phenyl laurate). The immobilization/entrapment enhanced the stability of the lipase at a relatively higher temperature (50 degrees C) and also promoted enzyme activity at an acidic pH (pH 5.5). Moreover, the immobilized lipase was quite resistant to the denaturing effect of SDS.  相似文献   

8.
Lipase from Rhizomucor miehei (RML) and Thermomyces lanuginosa lipase (TLL) were immobilized on silica core-shell magnetic nanoparticles (Fe3O4@SiO2) produced by coating Fe3O4 core with silica shell. The nanoparticles were functionalized with aldehyde groups followed by immobilization of RML and TLL by using a multi-component reaction in an extremely mild condition. Rapid immobilization of both enzymes (1.5−12 h) with high immobilization yields (81–100%) was observed. The maximum loading capacity of the support was determined to be 81 mg for RML and 97 mg for TLL. The thermal stability of the immobilized derivatives of RML and TLL were greatly improved by retaining 54 and 97 % of their initial activities at 65 °C, respectively. The immobilized preparations were used to produce biodiesel by transesterification of waste cooking oil. In an optimization study, Response Surface Methodology (RSM) and a central composite rotatable design (CCRD) were used to study the effect of amount of biocatalyst, temperature, reaction time, water adsorbent (wt.%) and ratio of t-butanol to oil (wt.%) on the yield of biodiesel production. Biodiesel production yield by immobilized TLL reached 93.1 % under optimal conditions while the maximum yield for RML was 57.5 %. Both immobilized derivatives showed high reusability after 5 cycles of the reaction.  相似文献   

9.
Abstract

Extracellular lipase from an indigenous Bacillus aryabhattai SE3-PB was immobilized in alginate beads by entrapment method. After optimization of immobilization conditions, maximum immobilization efficiencies of 77%?±?1.53% and 75.99%?±?3.49% were recorded at optimum concentrations of 2% (w/v) sodium alginate and 0.2?M calcium chloride, respectively, for the entrapped enzyme. Biochemical properties of both free and immobilized lipase revealed no change in the optimum temperature and pH of both enzyme preparations, with maximum activity attained at 60?°C and 9.5, respectively. In comparison to free lipase, the immobilized enzyme exhibited improved stability over the studied pH range (8.5–9.5) and temperature (55–65?°C) when incubated for 3?h. Furthermore, the immobilized lipase showed enhanced enzyme-substrate affinity and higher catalytic efficiency when compared to soluble enzyme. The entrapped enzyme was also found to be more stable, retaining 61.51% and 49.44% of its original activity after being stored for 30 days at 4?°C and 25?°C, respectively. In addition, the insolubilized enzyme exhibited good reusability with 18.46% relative activity after being repeatedly used for six times. These findings suggest the efficient and sustainable use of the developed immobilized lipase for various biotechnological applications.  相似文献   

10.
Commercially available steapsin lipase was immobilized on macroporous polymer beads (IB-350) and further investigated for biodiesel production under solvent free conditions. The fatty acid methyl ester (biodiesel) synthesis was carried out by the methanolysis of fresh and used cooking sunflower oil. The enzymatic reaction for biodiesel synthesis was optimized with various reaction parameters and the obtained reaction conditions were 1: 6 molar ratio (oil: methanol), 50 mg biocatalyst and 20% water content at 45°C for 48 h under solvent free conditions. It was observed that 94% of biodiesel was produced under the optimized reaction conditions. The four step addition of methanol at the interval of 12 h was found to be more effective. Moreover the biocatalyst was effectively reused for four consecutive recycles and was appreciably stable for 90 days. The results obtained highlight potential of immobilized steapsin lipase for biodiesel production.  相似文献   

11.
Staphylococcus epidermidis isolated from spoiled frozen marine fish samples exhibited optimum lipase activity of 8.1 U within 72 h in batch fermentation. Inducible effect of different sugars, nitrogen sources, salts and metal ions were studied on enzyme production. Trybutyrin induced the enzyme production by twofold. Addition of lactose in the production medium further improved lipase production. Sodium chloride increased lipase production whereas the presence of metals in the media had an inhibitory effect. Cells of immobilized S. epidermidis in agar beads (3%) increased lipase production compared with free cells. The optimum temperature and pH for enzyme activity was 20 degrees C and 7.0 respectively. Lipase retained its 85% stability at pH 6.0 and at 40 degrees C. Immobilized cells with high lipolytic activity and stability may provide commercial advantages over conventional methods of lipase production.  相似文献   

12.
以不同大孔树脂吸附法固定化假丝酵母99_125脂肪酶,在微水有机相中的应用表明非极性树脂NKA是最佳的固定化载体。分别以正庚烷及磷酸盐缓冲液作为固定化介质,发现在正庚烷介质中树脂NKA的固定化效率能够达到98.98%,与采用磷酸盐缓冲液作为介质相比,固定化酶的水解活力和表观酶活回收率分别提高了4.07和3.43倍。考察了在微水相中固定化酶催化合成生物柴油的催化性能,结果表明,在给酶量为1.92∶1(初始酶粉与树脂的质量比),pH值为7.4,体系水含量为15%(水与油的质量比),反应温度为40℃条件下,固定化酶具有最佳的催化能力;以正庚烷为介质固定化脂肪酶催化合成生物柴油,采用三次流加甲醇的方式,单批转化率最高达到97.3%,连续反应19批以后转化率仍保持为70.2%。  相似文献   

13.
Cross-linked enzyme aggregates (CLEAs) have emerged as an interesting biocatalyst design for immobilization. Using this approach, a 1,3 regiospecific, alkaline and thermostable lipase from Thermomyces lanuginosa was immobilized. Efficient cross-linking was observed when ammonium sulphate was used as precipitant along with a two fold increase in activity in presence of SDS. The TEM and SEM microphotographs of the CLEAs formed reveal that the enzyme aggregates are larger in size as compared to the free lipase due to the cross-linking of enzyme aggregates with glutaraldehyde. The stability and reusability of the CLEA with respect to olive oil hydrolysis was evaluated. The CLEA showed more than 90% residual activity even after 10 cycles of repeated use.  相似文献   

14.
As a short chain monoester, sucrose-6-acetate (S-6-a) is a key intermediate in the preparation of an eminent sweetener (sucralose). To replace the traditional multi-step chemical route for sucralose biosynthesis, enzymatic synthesis of S-6-a was investigated, using cross-linked enzyme aggregates (CLEAs) of Lipozyme TL 100 L. The optimal CLEA preparation conditions was obtained as follows: using 33.3% (v/v) PEG600 co-precipitated with additive of D-sorbierite, then cross-linking with 1.5% (v/v) glutaraldehyde at 0 °C for 4 h. As a result, the immobilized Lipozyme had high specific bioactivity (34.64 U/g) of transesterification in non-aqueous media. With these immobilized enzymes, the optimum transesterification conditions were investigated systematically, including CLEA loading, the mole ratio of vinyl acetate versus sucrose, temperature and reaction time, etc. The results showed that the highest concentration and yield of S-6-a was 49.8 g/L and 87.46%, respectively. Further experiments showed that the resulting CLEAs also had much higher operational stability than the commercial Lipozyme TLIM. The present work has paved a new path for the large-scale bioproduction of S-6-a with immobilized lipase in the future.  相似文献   

15.
Lipase from Pseudomonas fluorescens biotype I was immobilized on macroporous anion exchange resin using glutaraldehyde to enhance the adsorption. The immobilization method was selected, because it provided the highest extent of hydrolysis of beef tallow at high substrate concentrations. The immobilized lipase was not substantially inhibited by oleic acid or sodium oleate, but the soluble lipase was strongly inhibited by both substances. The optimum pH of lipolysis was pH 4 for the immobilized lipase and pH 6 for the soluble one. These results indicate that the microenvironment created around the lipase molecule by immobilization eliminates product inhibition. In addition, the immobilization on the support enhances the stability of the lipase against chemical denuaturation. (c) 1992 John Wiley & Sons, Inc.  相似文献   

16.
To develop a robust whole-cell biocatalyst that works well at moderately high temperature (40–50 °C) with organic solvents, a thermostable lipase from Geobacillus thermocatenulatus (BTL2) was introduced into an Aspergillus oryzae whole-cell biocatalyst. The lipase-hydrolytic activity of the immobilized A. oryzae (r-BTL) was highest at 50 °C and was maintained even after an incubation of 24-h at 60 °C. In addition, r-BTL was highly tolerant to 30% (v/v) organic solvents (dimethyl carbonate, ethanol, methanol, 2-propanol or acetone). The attractive characteristics of r-BTL also worked efficiently on palm oil methanolysis, resulting in a nearly 100% conversion at elevated temperature from 40 to 50 °C. Moreover, r-BTL catalyzed methanolysis at a high methanol concentration without a significant loss of lipase activity. In particular, when 2 molar equivalents of methanol were added 2 times, a methyl ester content of more than 90% was achieved; the yield was higher than those of conventional whole-cell biocatalyst and commercial Candida antarctica lipase (Novozym 435). On the basis of the results regarding the excellent lipase characteristics and efficient biodiesel production, the developed whole-cell biocatalyst would be a promising biocatalyst in a broad range of applications including biodiesel production.  相似文献   

17.
A constitutive level of a mycelium-bound lipolytic activity from Aspergillus niger MYA 135 was strongly increased by 97% in medium supplemented with 2% olive oil. The constitutive lipase showed an optimal activity in the pH range of 3.0–6.5, while the mycelium-bound lipase activity produced in the presence of olive oil had two pH optima at pH 4 and 7. Interestingly, both lipolytic sources were cold-active showing high catalytic activities in the temperature range of 4–8°C. These mycelium-bound lipase activities were also very stable in reaction mixtures containing methanol and ethanol. In fact, the constitutive lipase maintained almost 100% of its activity after exposure by 1 h at 37°C in ethanol. A simple methodology to evaluate suitable transesterification activities in organic solvents was also reported.  相似文献   

18.
Yücel Y 《Bioresource technology》2011,102(4):3977-3980
In the present work, microbial lipase from Thermomyces lanuginosus was immobilized by covalent binding onto olive pomace. Immobilized support material used to produce biodiesel with pomace oil and methanol. The properties of the support and immobilized derivative were evaluated by scanning electron microscopy (SEM). The maximum immobilization of T. lanuginosus was obtained as 18.67 mg/g support and the highest specific activity was 10.31 U/mg protein. The properties of immobilized lipase were studied. The effects of protein concentration, pH and buffer concentration on the immobilization and lipase activity were investigated. Biodiesel production using the immobilized lipase was realized by a three-step addition of methanol to avoid strong substrate inhibition. Under the optimized conditions, the maximum biodiesel yield was 93% at 25 °C in 24 h reaction. The immobilized enzyme retained its activity during the 10 repeated batch reactions.  相似文献   

19.
《Process Biochemistry》2010,45(7):1192-1195
Whole cell-mediated methanolysis of renewable oils for biodiesel production has drawn much attention in recent years since it can avoid the complex procedures of isolation, purification and immobilization required for the preparation of immobilized lipase. It has been demonstrated that Rhizopus oryzae IFO 4697 whole cell could catalyze the methanolysis of renewable oils for biodiesel production effectively and glutaraldehyde (GA) cross-linking treatment on whole cell catalyst could improve its stability in the repeated uses. The catalytic performance of cells with GA cross-linking treatment was studied systematically in this paper. The results showed that the treated cells expressed higher methanol tolerance, and high catalytic activity could be maintained with higher ratio of methanol to oil; the operational stability of whole cell catalyst and methanol utilization rate were also considered in optimization of methanol addition strategy. A novel methanol addition strategy was proposed, with which the reaction time could be shortened significantly and a biodiesel yield of 94.1% could be obtained within 24 h reaction; it was also found that with this methanol addition strategy, GA cross-linked whole cell expressed rather good operational stability; the reason for stability improvement was also investigated and should be attributed to less lipase leakage.  相似文献   

20.
Among several lipase-producing actinomycete strains screened, Amycolatopsis mediterranei DSM 43304 was found to produce a thermostable, extracellular lipase. Culture conditions and nutrient source modification studies involving carbon sources, nitrogen sources, incubation temperature and medium pH were carried out. Lipase activity of 1.37 ± 0.103 IU/ml of culture medium was obtained in 96 h at 28°C and pH 7.5 using linseed oil and fructose as carbon sources and a combination of phytone peptone and yeast extract (5:1) as nitrogen sources. Under optimal culture conditions, the lipase activity was enhanced 12-fold with a twofold increase in lipase specific activity. The lipase showed maximum activity at 60°C and pH 8.0. The enzyme was stable between pH 5.0 and 9.0 and temperatures up to 60°C. Lipase activity was significantly enhanced by Fe3+ and strongly inhibited by Hg2+. Li+, Mg2+ and PMSF significantly reduced lipase activity, whereas other metal ions and effectors had no significant effect at 0.01 M concentration. A. mediterranei DSM 43304 lipase exhibited remarkable stability in the presence of a wide range of organic solvents at 25% (v/v) concentration for 24 h. These features render this novel lipase attractive for potential biotechnological applications in organic synthesis reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号