首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Characterization and manipulation of aluminum (Al) tolerance genes offers a solution to Al toxicity problems in crop cultivation on acid soil, which composes approximately 40% of all arable land. By exploiting the rice (Oryza sativa L.)/rye (Secale cereale L.) syntenic relationship, the potential for map-based cloning of genes controlling Al tolerance in rye (the most Al-tolerant cereal) was explored. An attempt to clone an Al tolerance gene (Alt3) from rye was initiated by using DNA markers flanking the rye Alt3 gene, from many cereals. Two rice-derived, PCR-based markers flanking the Alt3 gene, B1 and B4, were used to screen 1,123 plants of a rye F2 population segregating for Alt3. Fifteen recombinant plants were identified. Four additional RFLP markers developed from rice genes/putative genes, spanning 10 kb of a 160-kb rice BAC, were mapped to the Alt3 region. Two rice markers flanked the Alt3 locus at a distance of 0.05 cM, while two others co-segregated with it. The rice/rye micro-colinearity worked very well to delineate and map the Alt3 gene region in rye. A rye fragment suspected to be part of the Alt3 candidate gene was identified, but at this level, the rye/rice microsynteny relationship broke down. Because of sequence differences between rice and rye and the complexity of the rye sequence, we have been unable to clone a full-length candidate gene in rye. Further attempts to clone a full-length rye Alt3 candidate gene will necessitate the creation of a rye large-insert library.  相似文献   

2.
The major limit to plant growth in acid soils is the presence of toxic aluminum (Al) cations, which limit growth by inhibiting root elongation. Aluminum tolerance in rye is controlled by (at least) four independent loci (Alt1, Alt2, Alt3 and Alt4) located on chromosome arms 6RS, 3RS, 4RL and 7RS, respectively. In this work, we analyzed several F2 populations in which two different Alt loci were segregating. We constructed a map of chromosome 7R, which contains the Alt4 locus and microsatellite and PCR-markers (B1, B4, B11, B26 and BCD1230). These markers were mapped to the S arm of 7R using wheat-rye addition lines. Our results show that all these markers are linked to the Alt4 locus already known to be on 7RS. In addition, the OPS14 705 RAPD marker was linked to the Alt3 locus using bulked segregant analysis. This RAPD marker was transformed into a SCAR (ScOPS14 705 ) and was localized to arm 4RL using wheat-rye addition lines. Finally, this SCAR was linked to the Alt3 locus at a genetic distance of 23.4 cM. In light of the current findings, and taking into account the synteny relationships in cereals, we propose candidate Alt3 and Alt4 orthologues in other cereals.  相似文献   

3.
Aluminum (Al) toxicity is considered to be a major problem for crop growth and production on acid soils. The ability of crops to overcome Al toxicity varies among crop species and cultivars. Rye (Secale cereale L.) is the most Al-tolerant species among the Triticeae. Our previous study showed that Al tolerance in a rye F6 recombinant inbred line (RIL) population was controlled by a single gene designated as the aluminum tolerance (Alt3) gene on chromosome 4RL. Based on the DNA sequence of a rice (Oryza sativa L.) BAC clone suspected to be syntenic to the Alt3 gene region, we developed two PCR-based codominant markers flanking the gene. These two markers, a sequence-tagged site (STS) marker and a cleaved amplified polymorphic sequence (CAPS) marker, each flanked the Alt3 gene at an approximate distance of 0.4 cM and can be used to facilitate high-resolution mapping of the gene. The markers might also be used for marker-assisted selection in rye or wheat (Triticum aestivum L.) breeding programs to obtain Al-tolerant lines and (or) cultivars.  相似文献   

4.
Summary RFLP mapping of chromosome 5R in the F3 generation of a rye (Secale cereale L.) cross segregating for gibberellic acid (GA3)-insensitive dwarfness (Ct2/ct2) and spring growth habit (Sp1/sp1) identified RFLP loci close to each of these agronomically important genes. The level of RFLP in the segregating population was high, and thus allowed more than half of the RFLP loci to be mapped, despite partial homozygosity in the parental F2 plant. Eight further loci were mapped in an unrelated F2 rye population, and a further two were placed by inference from equivalent genetic maps of related wheat chromosomes, allowing a consensus map of rye chromosome 5R, consisting of 29 points and spanning 129 cM, to be constructed. The location of the ct2 dwarfing gene was shown to be separated from the segment of the primitive 4RL translocated to 5RL, and thus the gene is probably genetically unrelated to the major GA-insensitive Rht genes of wheat located on chromosome arms 4BS and 4DS. The map position of Sp1 is consistent both with those of wheat Vrn1 and Vrn3, present on chromosome arms 5AL and 5DL, respectively, and with barley Sh2 which is distally located on chromosome arm 7L (= 5HL).  相似文献   

5.
Aluminium toxicity is a major problem for crop production on acid soils. Rye (Secale cereale L.) has one of the most efficient group of genes for aluminium tolerance, at least, four independent and dominant loci, Alt1, Alt2, Alt3 and Alt4, located on chromosome arms 6RS, 3RS, 4RL and 7RS, have been described. The increasing availability of expressed sequence tags in rye and related cereals provides a valuable resource of non-anonymous DNA molecular markers. In order to obtain simple sequence repeat (SSR) markers related with Al tolerance more than 1,199 public accessible rye cDNA sequences from Al-stressed roots were exploited as a resource for SSR markers development. From a total of 21 S. cereale microsatellite (SCM) loci analysed, 12 were located on chromosomes 1R, 2R, 3R, 4R and 5R, using wheat–rye addition lines or mapped using a F2 population segregating for Al tolerance. Seven SCM loci were included in a rye map with other SCIM and RAPD markers. Moreover, 14 SCM loci could be associated to proteins with known or unknown function. The possible implications of these sequences in aluminium tolerance mechanisms are discussed.  相似文献   

6.
 A recombinant inbred line derived from a cross between CO39 and ‘Moroberekan’, RIL276, was found to be resistant to lineage 44 isolates of Pyricularia grisea in the Philippines. One hundred F2 individuals were obtained from a backcross of RIL276 and CO39. Phenotypic analysis showed that RIL276 carries a single locus, tentatively named Pi44(t), conferring complete resistance to lineage 44 isolates of P. grisea. RFLP probes, STS primers and AFLP markers were applied to identify DNA markers linked to Pi44(t). Neither RFLP nor STS-PCR analysis gave rise to DNA markers linked to the locus. Using bulk segregant AFLP analysis, however, two dominant AFLP markers (AF348 and AF349) linked to Pi44(t) were identified. AF349 and AF348 were located at 3.3±1.5 cM and 11±3.5 cM from Pi44(t), respectively. These markers were mapped on chromosome 11 using an F2 population derived from a cross between ‘Labelle’ and ‘Black Gora’. The location of AF348 on chromosome 11 was confirmed using another F2 mapping population derived from IR40931-26-3-3-5/ PI543851. DNA products at the loci linked to Pi44(t) were amplified from RIL276, ‘Labelle’ and PI543851 using the same primer pairs used to amplify AF349 and AF348. Sequence analysis of these bands showed 100% identity between lines. This result indicates that these AFLP markers could be used for the comparison of maps or assignment of linkage groups to chromosomes. Received: 12 May 1998 / Accepted: 13 November 1998  相似文献   

7.
 A gene determining the restoration of cytoplasmic genic male sterility (CMS) caused by the Gülzow (G)-type cytoplasm was mapped by analyzing an F2 and F3 population comprising 140 and 133 individual plants, respectively. The target gene, designated Rfg1, was mapped on chromosome 4RL distally to three RFLP (Xpsr119, Xpsr167, Xpsr899) and four RAPD (XP01, XAP05, XR11, XS10) loci. Xpsr167 and Xpsr899 are known to be located on the segment of chromosome 4RL which was ancestrally translocated and is homoeologous to the distal end of other Triticeae 6S chromosomes. It is suggested that Rfg1 may be allelic to the gene determining the restoration of rye CMS caused by the Pampa (P) cytoplasm (chromosome 4RL) and to Rfc4 that on rye addition lines of chromosome 4RL restores male fertility of hexaploid wheat with T. timopheevi cytoplasm. Homoeoallelism to two loci for cytoplasmic-male-sterility restoration on chromosomes 6AS and 6BS in hexaploid wheat is also suggested. Received: 1 December 1997 / Accepted: 10 February 1998  相似文献   

8.
The Rfc1 gene controls restoration of male fertility in rye (Secale cereale L.) with sterility-inducing cytoplasm CMS-C. Two populations of recombinant inbred lines (RIL) were used in this study to identify DArT markers located on the 4RL chromosome, in the close vicinity of the Rfc1 gene. In the population developed from the 541×2020LM intercross, numerous markers tightly linked with the restorer gene were identified. This group contained 91 DArT markers and three SCARs additionally analyzed in the study. All these markers were mapped in the distance not exceeding 6 cM from the gene of interest. In the second mapping population (541×Ot1-3 intercross), only 9 DArT markers located closely to the Rfc1 gene were identified. Five of these DArT markers were polymorphic in both populations.  相似文献   

9.
A new aluminum tolerance gene located on rye chromosome arm 7RS   总被引:2,自引:0,他引:2  
Rye has one of the most efficient groups of genes for aluminum tolerance (Alt) among cultivated species of Triticeae. This tolerance is controlled by, at least, three independent and dominant loci (Alt1, Alt2, and Alt3) located on chromosome arms 6RS, 3RS, and 4RL, respectively. The segregation of Alt genes and several random amplified polymorphic DNA (RAPD), Secale cereale inter-microsatellite (SCIM), and Secale cereale microsatellite (SCM) markers in three F(2) between a tolerant cultivar (Ailés) and a non-tolerant inbred line (Riodeva) were studied. The segregation ratio obtained for aluminum tolerance in the three F(2) populations analyzed was 3:1 (tolerant:non-tolerant), indicating that tolerance is controlled by one dominant locus. SCIM811(1376) was linked to an Alt gene in the three F(2) populations studied, and three different SCIMs and one RAPD (SCIM811(1376), SCIM812(626), SCIM812(1138), and OPQ4(725)) were linked to the Alt gene in two F(2) populations. This result indicated that the same Alt gene was segregating in the three crosses. SCIM819(1434) and OPQ4(578) linked to the tolerance gene in one F(2) population were located using wheat-rye ditelosomic addition lines on the 7RS chromosome arm. The Alt locus is mapped between SCIM819(1434) and the OPQ4(578) markers. Two microsatellite loci (SCM-40 and SCM-86), previously located on chromosome 7R, were also linked to the Alt gene. Therefore, the Alt gene segregating in these F(2) populations is new and probably could be orthologous to the Alt genes located on wheat chromosome arm 4DL, on barley chromosome arm 4HL, on rye chromosome arm 4RL, and rice chromosome 3. This new Alt gene located on rye chromosome arm 7RS was named Alt4. A map of rye chromosome 7R with the Alt4 gene, 16 SCIM and RAPD, markers and two SCM markers was obtained.  相似文献   

10.
 A genetic map of the long arm of chromosome 6R of rye was constructed using eight homoeologous group-6 RFLP clones and five PCR markers derived from the rye-specific dispersed repetitive DNA family, R173. The map was developed using a novel test-cross F1 (TC-F1) population segregating for resistance to the cereal cyst nematode. Comparisons were made between the map generated with other rye and wheat group-6 chromosome maps by the inclusion of RFLP clones previously mapped in those species. Co-linearity was observed for common loci. This comparison confirmed a dramatic reduction in recombination for chromosome 6R in the TC-F1 population. The CreR locus was included in the linkage map via progeny testing of informative TC-F1 individuals. CreR mapped 3.7 cM distal from the RFLP locus, XksuF37. Comparative mapping should allow the identification of additional RFLP markers more closely linked to the CreR locus. Received: 14 April 1998 / Accepted: 29 April 1998  相似文献   

11.
In crosses between hexaploid wheat and inbred lines of rye, a small number of rye genotypes produce seeds carrying undifferentiated, non-viable embryos. Hybrids between such lines and those not showing this phenotype were used as pollen donors in crosses with bread wheat in order to determine the genetic basis of disturbed embryo development. A single gene, designated Eml-R1b, is causing this character. Molecular markers associated with F2 genotypes derived from a contrasting rye inbred progeny were used for a linkage study. Recombinant inbred lines of an F5 population served as testers. Eml-R1b maps to chromosome arm 6RL, along with two co-segregating microsatellite loci, Xgwm1103 and Xgwm732. Complementary interactions of deleterious genes in wheat and rye are discussed.  相似文献   

12.
Among cereal crops, rye is one of the most tolerant species to aluminum. A candidate gene approach was used to determine the likely molecular identity of an Al tolerance locus (Alt4). Using PCR primers designed from a wheat aluminum tolerance gene encoding an aluminum-activated malate transporter (TaALMT1), a rye gene (ScALMT1) was amplified, cloned and sequenced. Subsequently, the ScALMT1 gene of rye was found to be located on 7RS by PCR amplification using the wheat–rye addition lines. SNP polymorphisms for this gene were detected among the parents of three F2 populations that segregate for the Alt4 locus. A map of the rye chromosome 7R, including the Alt4 locus ScALMT1 and several molecular markers, was constructed showing a complete co-segregation between Alt4 and ScALMT1. Furthermore, expression experiments were carried out to clarify the function of this candidate gene. Briefly, the ScALMT1 gene was found to be primarily expressed in the root apex and upregulated when aluminum was present in the medium. Five-fold differences in the expression were found between the Al tolerant and the Al non-tolerant genotypes. Additionally, much higher expression was detected in the rye genotypes than the moderately tolerant “Chinese Spring” wheat cultivar. These results suggest that the Alt4 locus encodes an aluminum-activated organic acid transporter gene that could be utilized to increase Al tolerance in Al sensitive plant species. Finally, TaALMT1 homologous sequences were identified in different grasses and in the dicotyledonous plant Phaseolus vulgaris. Our data support the hypothesis of the existence of a common mechanism of Al tolerance encoded by a gene located in the homoeologous group four of cereals. G. Fontecha and J. Silva-Navas contributed equally to this work.  相似文献   

13.
Genetic control of aluminium tolerance in rye (Secale cereale L.)   总被引:4,自引:0,他引:4  
 Aluminium (Al) tolerance in roots of two cultivars (“Ailés” and “JNK”) and two inbred lines (“Riodeva” and “Pool”) of rye was studied using intact roots immersed in a nutrient solution at a controlled pH and temperature. Both the cultivars and the inbred lines analysed showed high Al tolerance, this character being under multigenic control. The inbred line “Riodeva” was sensitive (non-telerant) at a concentration of 150 μM, whereas the “Ailes” cultivar showed the highest level of Al tolerance at this concentration. The segregation of aluminium-tolerance genes and several isozyme loci in different F1s, F2s and backcrosses between plants of “Ailés” and “Riodeva” were also studied. The segregation ratios obtained for aluminium tolerance in the F2s analysed were 3 : 1 and 15 : 1 (tolerant : non-tolerant) while in backcrosses they were 1 : 1 and 3 : 1. These results indicated that Al tolerance is controlled by, at least, two major dominant and independent loci in rye (Alt1 and Alt3). Linkage analyses carried out between Al-tolerance genes and several isozyme loci revealed that the Alt1 locus was linked to the aconitase-1 (Aco1), nicotinamide adenine dinucleotide dehydrogenase-2 (Ndh2), esterase-6 (Est6) and esterase-8 (Est8) loci, located on chromosome arm 6RL. The order obtained was Alt1-Aco1-Ndh2-Est6-Est8. The Alt3 locus was not linked to the Lap1, Aco1 and Ndh2 loci, located on chromosome arms, 6RS, 6RL and 6RL respectively. Therefore, the Alt3 locus is probably on a different chromosome. Received: 18 March 1997 / Accepted: 21 March 1997  相似文献   

14.
AnnongS-1, a thermo-sensitive genic male-sterile (TGMS) rice line, has a new TGMS gene. Genetic analysis indicated that the sterility of AnnongS-1 was controlled by a single resessive gene named tms5. In our previous studies based on an F2 population from the cross between AnnongS-1 and Nanjing11, tms5 was mapped on chromosome 2. Recently, a RIL (recombinant inbred line) population from the same cross was developed and used for the fine mapping of the tms5 gene. Molecular marker techniques combined with BSA (bulked segregant analysis) were used. As a result, two AFLP markers (AF10, AF8), one RAPD marker (RA4), one STS marker (C365-1), one CAPs marker (G227-1) and four SSR markers (RM279, RM492, RM327, RM324) were found to be closely linked to tms5 gene. The DNA sequences of the RFLP marker of C365 and G227 were found in GenBank, and on the basis of these sequences, many primers were designed to amplify the two parents and their RIL population plants. Finally, the tms5 gene was mapped between STS marker C365-1 and CAPs marker G227-1 at a distance of 1.04 cM from C365-1 and 2.08 cM from G227-1.Communicated by H.F. LinskensY.G. Wang and Q.H. Xing contributed equally to this contribution.  相似文献   

15.
 The complex Mla locus of barley determines resistance to the powdery mildew pathogen Erysiphe graminis f. sp. hordei. With a view towards gene isolation, a population consisting of 950 F2 individuals derived from a cross between the near-isogenic lines ‘P01’ (Mla1) and ‘P10’ (Mla12) was used to construct a high-resolution map of the Mla region. A fluorescence-based AFLP technique and bulked segregant analysis were applied to screen for polymorphic, tightly linked AFLP markers. Three AFLP markers were selected as suitable for a chromosome-landing strategy. One of these AFLP markers and a closely linked RFLP marker were converted into sequence-specific PCR markers. PCR-based screening of approximately 70 000 yeast artificial chromosome (YAC) clones revealed three identical YACs harbouring the Mla locus. Terminal insert sequences were obtained using inverse PCR. The derived STS marker from the right YAC end-clone was mapped distal to the Mla locus. Received: 17 July 1998 / Accepted: 9 August 1998  相似文献   

16.
Hybrid rye breeding and seed production is based on the cytoplasmic male sterility (CMS)-inducing Pampa (P)-cytoplasm. For restoring male fertility in the hybrids, dominant, nuclear restorer genes are necessary. However, current pollinator lines are only partial restorers. Effective restorers were recently detected in the German inbred line L18 and in materials originating from the Argentinian rye cultivar Pico Gentario and an Iranian primitive rye accession called IRAN IX. F2 populations were developed for each of these three restorer sources to map the responsible genes by means of RFLP (restriction fragment length polymorphism) markers. For this purpose, homo- and heterologous DNA probes were used leading to 101 polymorphic marker loci in total. For phenotypic evaluation, 100 to 134 randomly chosen plants from each of the populations were cloned and grown at two or three locations with two plants each. Segregation ratios of pollen fertility in the F2 populations with L18 and IRAN IX were in accordance with a monogenic dominant inheritance. The segregation pattern for Pico Gentario indicated complementary gene action. Major dominant restorer genes were detected on chromosomes 1RS (L18) and 4RL (Pico Gentario, IRAN IX). The gene on 1RS explained 54% of the phenotypic variation and that on 4 RL 59% and 68% in the Pico Gentario and IRAN IX populations, respectively. Additionally, three minor genes from L18 were identified on chromosomes 3RL, 4RL and 5R. In the Pico Gentario population, a dominant modifier gene contributed by the female parent was found on chromosome 6R. This gene significantly enhanced the expression of the major restorer gene but on its own was not able to restore any degree of fertility. The map-distances between the major restorer loci and at least one flanking marker were small in all three F2 populations (5–6 cM). In Pico Gentario an unfavorable linkage exists between the major restorer gene and a QTL for plant height. Since highly effective restorers are scarce in actual breeding populations, the major restorer genes detected on chromosomes 1 RS and 4RL should be introgressed into actual restorer lines. This is facilitated by using the closely linked molecular markers described. Received: 10 February 2000 / Accepted: 31 March 2000<@head-com-p1a.lf>Communicated by G. Wenzel  相似文献   

17.
 Three mutant loci of rye determining absence of ligules (al), waxless plant (wa1) and waxy endosperm (Wx) characters were mapped in a single F2 population, comprising 84 individual plants. The three loci could be clearly tagged in relation to 7 (al on chromosome 2R), 4 (wa1 on chromosome 7R) or 6 (Wx on chromosome 4R) RFLP markers. The mapping data are compared with existing data for homoeologous regions containing equivalent mutants of wheat, barley, rice and maize. It is shown that the loci analysed are highly conserved across the cereal species, including rye. Received: 14 March 1997 / Accepted: 21 March 1997  相似文献   

18.
Summary Bruchids (genus Callosobruchus) are among the most destructive insect pests of mungbeans and other members of the genus, Vigna. Genetic resistance to bruchids was previously identified in a wild mungbean relative, TC1966. To analyze the underlying genetics, accelerate breeding, and provide a basis for map-based cloning of this gene, we have mapped the TC1966 bruchid resistance gene using restriction fragment length polymorphism (RFLP) markers. Fifty-eight F2 progeny from a cross between TC1966 and a susceptible mungbean cultivar were analyzed with 153 RFLP markers. Resistance mapped to a single locus on linkage group VIII, approximately 3.6 centimorgans from the nearest RFLP marker. Because the genome of mungbean is relatively small (estimated to be between 470 and 560 million base pairs), this RFLP marker may be suitable as a starting point for chromosome walking. Based on RFLP analysis, an individual was also identified in the F2 population that retained the bruchid resistance gene within a tightly linked double crossover. This individual will be valuable in developing resistant mungbean lines free of linkage drag.  相似文献   

19.
Tetraploid Paspalum notatum (bahiagrass) is a valuable forage grass with aposporous apomictic reproduction. In a previous study, we showed that apospory in bahiagrass is under the control of a single dominant gene with a distorted segregation ratio. The objective of this work was to identify molecular markers linked to apospory in tetraploid P. notatum and establish a preliminary syntenic relationship with the genomic region associated with apospory in P. simplex. A F1 population of 290 individuals, segregating for apospory, was generated after crossing a completely sexual plant (Q4188) with a natural aposporous apomictic plant (Q4117). The whole progeny was classified as sexual or aposporous by embryo sacs analysis. A bulked segregant analysis was carried out to identify molecular markers co-segregating with apospory. Four hundred RAPD primers, 30 AFLP primers combinations and 85 RFLP clones were screened using DNA from both parental genotypes and aposporous and sexual bulks. Linkage analysis was performed with cytological and genetic information from the complete progeny. Cytoembryological analysis showed 219 sexual and 71 aposporous F1 individuals. Seven different molecular markers (2 RAPD, 4 AFLP and 1 RFLP) were found to be completely linked to apospory. The RFLP probe C1069, mapping to the telomeric region of the long arm of rice chromosome 12, was one of the molecular markers completely linked to apospory in P. notatum. This marker had been previously associated with apospory in P. simplex. A preliminary map of the chromosome region carrying the apospory locus was constructed.  相似文献   

20.
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt) is one of the most important wheat diseases worldwide. Wild emmer wheat, Triticum turgidum ssp. dicoccoides, the tetraploid ancestor (AABB) of domesticated bread and durum wheat, harbors many important alleles for resistance to various diseases, including powdery mildew. In the current study, two tetraploid wheat mapping populations, derived from a cross between durum wheat (cv. Langdon) and wild emmer wheat (accession G-305-3M), were used to identify and map a novel powdery mildew resistance gene. Wild emmer accession G-305-3M was resistant to all 47 Bgt isolates tested, from Israel and Switzerland. Segregation ratios of F2 progenies and F6 recombinant inbred line (RIL) mapping populations, in their reactions to inoculation with Bgt, revealed a Mendelian pattern (3:1 and 1:1, respectively), indicating the role of a single dominant gene derived from T. dicoccoides accession G-305-3M. This gene, temporarily designated PmG3M, was mapped on chromosome 6BL and physically assigned to chromosome deletion bin 6BL-0.70-1.00. The F2 mapping population was used to construct a genetic map of the PmG3M gene region consisted of six simple sequence repeats (SSR), 11 resistance gene analog (RGA), and two target region amplification polymorphism (TRAP) markers. A second map, constructed based on the F6 RIL population, using a set of skeleton SSR markers, confirmed the order of loci and distances obtained for the F2 population. The discovery and mapping of this novel powdery mildew resistance gene emphasize the importance of the wild emmer wheat gene pool as a source for crop improvement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号