首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Black band disease (BBD) is a virulent polymicrobial disease primarily affecting massive-framework-building species of scleractinian corals. While it has been well established that the BBD bacterial mat is dominated by a cyanobacterium, the quantitative composition of the BBD bacterial mat community has not described previously. Terminal-restriction fragment length polymorphism (T-RFLP) analysis was used to characterize the infectious bacterial community of the bacterial mat causing BBD. These analyses revealed that the bacterial composition of the BBD mat does not vary between different coral species but does vary when different species of cyanobacteria are dominant within the mat. On the basis of the results of a new method developed to identify organisms detected by T-RFLP analysis, our data show that besides the cyanobacterium, five species of the division Firmicutes, two species of the Cytophaga-Flexibacter-Bacteroides (CFB) group, and one species of delta-proteobacteria are also consistently abundant within the infectious mat. Of these dominant taxa, six were consistently detected in healthy corals. However, four of the six were found in much higher numbers in BBD mats than in healthy corals. One species of the CFB group and one species of Firmicutes were not always associated with the bacterial communities present in healthy corals. Of the eight dominant bacteria identified, two species were previously found in clone libraries obtained from BBD samples; however, these were not previously recognized as important. Furthermore, despite having been described as an important component of the pathogenetic mat, a Beggiatoa species was not detected in any of the samples analyzed. These results will permit the dominant BBD bacteria to be targeted for isolation and culturing experiments aimed at deciphering the disease etiology.  相似文献   

2.
A ciliate associated with the coral disease brown band (BrB) was identified as a new species belonging to the class Oligohymenophorea, subclass Scuticociliatia. The ciliates were characterized by the presence of large numbers of intracellular dinoflagellates and displayed an elongated, tube-shaped body structure. They had uniform ciliature, except for three distinct cilia in the caudal region, and were typically 200 to 400 microm in length and 20 to 50 microm in width.  相似文献   

3.
Research into causative agents underlying coral disease have focused primarily on bacteria, whereas potential roles of viruses have been largely unaddressed. Bacteriophages may contribute to diseases through the lysogenic introduction of virulence genes into bacteria, or prevent diseases through lysis of bacterial pathogens. To identify candidate phages that may influence the pathogenicity of black band disease (BBD), communities of bacteria (16S rRNA) and T4-bacteriophages (gp23) were simultaneously profiled with amplicon sequencing among BBD-lesions and healthy-coral-tissue of Montipora hispida, as well as seawater (study site: the central Great Barrier Reef). Bacterial community compositions were distinct among BBD-lesions, healthy coral tissue and seawater samples, as observed in previous studies. Surprisingly, however, viral beta diversities based on both operational taxonomic unit (OTU)-compositions and overall viral community compositions of assigned taxa did not differ statistically between the BBD-lesions and healthy coral tissue. Nonetheless, relative abundances of three bacteriophage OTUs, affiliated to Cyanophage PRSM6 and Prochlorococcus phages P-SSM2, were significantly higher in BBD-lesions than in healthy tissue. These OTUs associated with BBD samples suggest the presence of bacteriophages that infect members of the cyanobacteria-dominated BBD community, and thus have potential roles in BBD pathogenicity.  相似文献   

4.
Recent studies have suggested that corallivorous fishes may be vectors for coral disease, but the extent to which fishes actually feed on and thereby potentially transmit coral pathogens is largely unknown. For this study, in situ video observations were used to assess the level to which fishes fed on diseased coral tissues at Lizard Island, northern Great Barrier Reef. Surveys conducted at multiple locations around Lizard Island revealed that coral disease prevalence, especially of brown band disease (BrB), was higher in lagoon and backreef locations than in exposed reef crests. Accordingly, video cameras were deployed in lagoon and backreef habitats to record feeding by fishes during 1-h periods on diseased sections of each of 44 different coral colonies. Twenty-five species from five fish families (Blennidae, Chaetodontidae, Gobiidae, Labridae and Pomacentridae) were observed to feed on infected coral tissues of staghorn species of Acropora that were naturally infected with black band disease (BBD) or brown band disease (BrB). Collectively, these fishes took an average of 18.6 (±5.6 SE) and 14.3 (±6.1 SE) bites per hour from BBD and BrB lesions, respectively. More than 40% (408/948 bites) and nearly 25% (314/1319 bites) of bites were observed on lesions associated with BBD and BrB, respectively, despite these bands each representing only about 1% of the substratum available. Moreover, many corallivorous fishes (Labrichthys unilineatus, Chaetodon aureofasciatus, C. baronessa, C. lunulatus, C. trifascialis, Cheiloprion labiatus) selectively targeted disease lesions over adjacent healthy coral tissues. These findings highlight the important role that reef fishes may play in the dynamics of coral diseases, either as vectors for the spread of coral disease or in reducing coral disease progression through intensive and selective consumption of diseased coral tissues.  相似文献   

5.
A very rare case of congenital skin tube pedicle with congenital constriction band syndrome was presented. Only one report concerning this bizarre abnormality could be found in the available literature, and no consideration of its etiology has previously been published. In our case, the skin tube was accompanied by the congenital constriction band syndrome, the cause of which is generally thought to be external factors. Thus the etiology of the congenital skin tube pedicle might be the peeling and rolling of a strip of the fetal skin by external force.  相似文献   

6.
To determine what happens to scleractinian corals that have been killed by black band disease (BBD), massive corals with BBD were monitored for 11 years on a shallow reef (<10 m depth) in St. John, US Virgin Islands. Small quadrats (0.039 m2) were used to compare the rates of scleractinian recruitment to the skeletons of corals killed by either BBD or physical disturbance (Hurricane Hugo 1989). Coral recruitment was also quantified on the adjacent fringing reef using larger quadrats (0.25 m2) to detect possible biases associated with using small, permanent quadrats to assess recruitment to BBD-killed corals. Of 28 tagged colonies with BBD in 1988, 43% were lost to Hurricane Hugo in 1989, 7% were lost to unknown causes between 1991 and 1992, and 14 were monitored annually for 11 years; of these, 71% were dead and still in their original growth position in 1998. Between 1988 and 1997, corals recruited to the BBD-killed surfaces at a rate of 1.1 ± 0.3 recruits · 0.039 m−2 · decade−1 (mean ± SE, n = 14), although mortality reduced the density to 0.3 ± 0.2 recruits · 0.039 m−2 by 1997. The rate of recruitment and the taxonomic composition of the coral recruits to BBD-killed corals were indistinguishable statistically from those to corals killed by Hurricane Hugo. This demonstrates that BBD creates space that is functionally the same as other dead coral surfaces in providing a substratum for coral recruitment. However, because coral recruits are dispersed widely, clumped in distribution and temporally variable in density on the fringing reef as a whole, it is unlikely that they will be found on monitored coral colonies that have been killed by BBD. While this hypothesis is consistent with the higher density of recruits on the fringing reef compared with BBD-killed corals, further studies are required to investigate alternative explanations such as the role of substratum age in favoring recruitment to surfaces other than those killed recently by BBD. Accepted: 26 August 1999  相似文献   

7.
Ciliophora is a phylum that is comprised of extremely diverse microorganisms with regard to their morphology and ecology. They may be found in various environments, as free-living organisms or associated with metazoans. Such associations range from relationships with low metabolic dependence such as epibiosis, to more intimate relationships such as mutualism and parasitism. We know that symbiotic relationships occur along the whole phylogeny of the group, however, little is known about their evolution. Theoretical studies show that there are two routes for the development of parasitism, yet few authors have investigated the evolution of these characteristics using molecular tools. In the present study, we inferred a wide dated molecular phylogeny, based on the 18S rDNA gene, for the entire Ciliophora phylum, mapped life habits throughout the evolutionary time, and evaluated whether symbiotic relationships were linked to the variation in diversification rates and to the mode of evolution of ciliates. Our results showed that the last common ancestor for Ciliophora was likely a free-living organism, and that parasitism is a recent adaptation in ciliates, emerging more than once and independently via two distinct routes: (i) a free-living ciliate evolved into a mutualistic organism and, later, into a parasitic organism, and (ii) a free-living ciliate evolved directly into a parasitic organism. Furthermore, we have found a significant increase in the diversification rate of parasitic and mutualistic ciliates compared with their free-living conspecifics. The evolutionary success in different lineages of symbiont ciliates may be associated with many factors including type and colonization placement on their host, as well as physical and physiological conditions made available by the hosts.  相似文献   

8.
The rapid tissue necrosis (RTN) is a common disease of both wild and captive stony corals, which causes a fast tissue degradation (peeling) and death of the colony. Here we report the results of an investigation carried out on the stony coral Pocillopora damicornis, affected by an RTN-like disease. Total abundance of prokaryotes in tissue samples, determined by epifluorescence microscopy, was significantly higher in diseased than in healthy corals, as well as bacterial counts on MB2216 agar plates. Further experiments performed by fluorescent in situ hybridization using a 16S rDNA Vibrio-specific probe showed that vibrios were significantly more abundant in diseased than in healthy corals. Accordingly, bacterial counts on TCBS agar plates were higher in diseased than in healthy tissues. 16S rDNA sequencing identified as Vibrio colonies from diseased tissues only. Cultivated vibrios were dominated by a single ribotype, which displayed 99% of similarity with Vibrio harveyi strain LB4. Bacterial ribotype richness, assessed by terminal-restriction fragment length polymorphism analysis of the 16S rDNA, was significantly higher in diseased than in healthy corals. Using an in silico software, we estimated that a single terminal restriction fragment, putatively assigned to a Vibrio sp., accounted for > 15% and < 5% of the total bacterial assemblage, in diseased and healthy corals respectively. These results let us hypothesize that the RTN in stony corals can be an infectious disease associated to the presence of Vibrio harveyi. However, further studies are needed to validate the microbial origin of this pathology.  相似文献   

9.
10.
The diversity of methanogenic archaea associated with different species of ciliated protozoa in the rumen was analysed. Partial fragments of archaeal SSU rRNA genes were amplified from DNA isolated from single cells from the rumen protozoal species Metadinium medium, Entodinium furca, Ophryoscolex caudatus and Diplodinium dentatum. Sequence analysis of these fragments indicated that although all of the new isolates clustered with sequences previously described for methanogens, there was a difference in the relative distribution of sequences detected here as compared to that of previous work. In addition, many of the novel sequences, although clearly of archaeal origin have relatively low identity to the sequences in database which are most closely related to them.  相似文献   

11.
Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic communities. However, little is known about the diversity of coral-associated bacterial communities. Mucus is a characteristic product of all corals, forming a coating over their polyps. The coral mucus is a rich substrate for microorganisms. Mucus was collected with a procedure using sterile cotton swabs that minimized contamination of the coral mucus by surrounding seawater. We used molecular techniques to characterize and compare the bacterial assemblages associated with the mucus of the solitary coral Fungia scutaria and the massive coral Platygyra lamellina from the Gulf of Eilat, northern Red Sea. The bacterial communities of the corals F. scutaria and P. lamellina were found to be diverse, with representatives within the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Deltaproteobacteria and Epsilonproteobacteria, as well as the Actinobacteria, Cytophaga-Flavobacter/Flexibacter-Bacteroides group, Firmicutes, Planctomyces, and several unclassified bacteria. However, the total bacterial assemblage of these two corals was different. In contrast to the bacterial communities of corals analyzed in previous studies by culture-based and culture-independent approaches, we found that the bacterial clone libraries of the coral species included a substantial proportion of Actinobacteria. The current study further supports the finding that bacterial communities of coral mucus are diverse.  相似文献   

12.
Brown band syndrome is a new coral affliction characterized by a local accumulation of yet-unidentified ciliates migrating as a band along the branches of coral colonies. In the current study, morphologically intact zooxanthellae (= Symbiodinium) were observed in great numbers inside the ciliates (>50 dinoflagellates per ciliate). Microscale oxygen measurements and variable chlorophyll a fluorescence analysis along with microscopic observations demonstrated that zooxanthellae within the ciliates are photosynthetically competent and do not become compromised during the progression of the brown band zone. Zooxanthellae showed similar trends in light acclimation in a comparison of rapid light curve and steady-state light curve measures of variable chlorophyll a fluorescence. Extended light exposure of steady-state light curves resulted in higher quantum yields of photosystem II. The brown band tissue exhibited higher photosynthetically active radiation absorptivity, indicating more efficient light absorption due to a higher density of zooxanthellae in the ciliate-dominated zone. This caused relatively higher gross photosynthesis rates in the zone with zooxanthella-containing ciliates compared to healthy coral tissue. The observation of photosynthetically active intracellular zooxanthellae in the ciliates suggests that the latter can benefit from photosynthates produced by ingested zooxanthellae and from photosynthetic oxygen production that alleviates diffusion limitation of oxic respiration in the densely populated brown band tissue. It remains to be shown whether the zooxanthellae form a stable symbiotic association with the ciliate or are engulfed incidentally during grazing on coral tissue and then maintained as active inside the ciliate for a period before being digested and replaced by new zooxanthellae.  相似文献   

13.
The ingestion of two size classes of natural particulate matter (PM) and the uptake of the associated nitrogen by four species of scleractinian corals was measured using the stable isotopic tracer 15N. PM collected in sediment traps was split into <63 and >105 µm size fractions and labeled with (15N-NH4)2SO4. Siderastrea radians, Montastrea franksi, Diploria strigosa, and Madracis mirabilis were incubated in flow chambers with the labeled PM in suspension (<63 µm), or deposited onto coral surfaces (>105 µm). Ingestion was detected for all four species (98–600 µg Dry wt. cm–2 h–1), but only for D. strigosa was any difference detected between suspended and deposited PM. Only the three mounding species, S. radians, M. franksi, and D. strigosa showed uptake of suspended and deposited particulate nitrogen (PN); whereas, the branched coral M. mirabilis had no measurable PN uptake. Only coral host tissues were enriched with 15N, with no tracer detected in the symbiotic zooxanthellae. Uptake rates ranged from as low as 0.80 µg PN cm–2 h–1 in S. radians to as high as 13 µg PN cm–2 h–1 in M. franksi. M. franksi had significantly higher uptake rates than S. radians (ANOVA, p<0.05), while D. strigosa had a statistically similar uptake rate compared to both species. These results are the first to compare scleractinian ingestion of nitrogen associated with suspended and deposited particulate matter, and demonstrate that the use of PM as a nitrogen source varies with species and colony morphology.  相似文献   

14.
Although microbes associated with shallow-water corals have been reported, deepwater coral microbes are poorly characterized. A cultivation-independent analysis of Alaskan seamount octocoral microflora showed that Proteobacteria (classes Alphaproteobacteria and Gammaproteobacteria), Firmicutes, Bacteroidetes, and Acidobacteria dominate and vary in abundance. More sampling is needed to understand the basis and significance of this variation.  相似文献   

15.
Wang  Zheng-Liang  Pan  Hai-bo  Wu  Wei  Li  Mu-Yu  Yu  Xiao-Ping 《Archives of microbiology》2021,203(1):325-333
Archives of Microbiology - Gut microbiota plays vital roles in the development, evolution and environmental adaptation of the host insects. The brown planthopper (BPH) is one of the most...  相似文献   

16.
Terpios hoshinota, a dark encrusting sponge, is known to be a competitor for space in coral reef environments, and facilitates the death of corals. Although numerous cyanobacteria have been detected in the sponge, little is known of the sponge-associated bacterial community. This study examined the sponge-associated bacterial community and the difference between the bacterial communities in the sponge and the coral partially covered by the sponge by analysis of 16S rRNA gene sequences of samples isolated from the sponge covering the corals Favia complanata, Isopora palifera, Millepora sp., Montipora efflorescens and Porites lutea. The sponge-associated bacterial community was mainly (61-98%) composed of cyanobacteria, with approximately 15% of these alphaproteobacteria and gammaproteobacteria, although the proportions varied in different sponge samples. The dominant cyanobacteria group was an isolated group closely related to Prochloron sp. The comparison of the bacterial communities isolated from sponge-free and the sponge-covered P. lutea showed that covering by the sponge caused changes in the coral-associated bacterial communities, with the presence of bacteria similar to those detected in black-band disease, suggesting the sponge might benefit from the presence of bacteria associated with unhealthy coral, particularly in the parts of the coral closest to the margin of the sponge.  相似文献   

17.
【目的】开发一种高效地从造礁石珊瑚中分离、培养共生虫黄藻的技术方法,为珊瑚共生虫黄藻藻种资源储备和生理功能研究积累基础。【方法】首先采用微孔滤网过滤法和密度梯度离心法从造礁石珊瑚组织中直接分离或富集共生虫黄藻细胞,然后用改良的L1培养基在96孔板上对所得细胞进行离体培养,最后进行单细胞分离、培养和(或)平板划线培养获得单克隆虫黄藻细胞系。对所得虫黄藻单克隆藻株进行聚合酶链式反应-限制性内切酶片段长度多态性(polymerase chainreaction-restrictionfragmentlengthpolymorphism,PCR-RFLP)分析,结合内转录间隔区2(internal transcribed spacer2,ITS2)和大亚基(large subunit,LSU)测序进行物种鉴定及系统发育分析。【结果】采用上述方法从涠洲岛的霜鹿角珊瑚(Acropora pruinose)和西沙群岛的丛生盔形珊瑚(Galaxea fascicularis)及柔枝鹿角珊瑚(Acropora tenuis)中分离、培养得到3个虫黄藻株系,编号分别为AP21C1、GF21D1和AT21A...  相似文献   

18.
19.
Coral reef degradation is often associated with regime shifts from coral‐ to macroalgal‐dominated reefs. These shifts demonstrate that under certain conditions (e.g. coral mortality, decrease in herbivory, increased nutrients supply) some macroalgae may overgrow corals. The outcome of the competition is dependent on algal aggressiveness and the coral susceptibility. In undisturbed reefs, herbivore grazing is regulating macroalgal cover, thus preventing the latter from overgrowing corals. However, some macroalgae have evolved strategies not only to outcompete corals but also to escape herbivory to some extent, allowing overgrowth of some coral species in undisturbed reefs. Epizoism represents one of those successful strategies, and has been previously documented with red algae, cyanobacteria and Lobophora variegata (Dictyotales, Phaeophyceae). Here we report a new case of epizoism leading to coral mortality, involving a recently described species of Lobophora, L. hederacea, overgrowing the coral Seriatopora caliendrum (Pocilloporidae) in undisturbed reefs in New Caledonia.  相似文献   

20.
【背景】珊瑚适应环境的能力与机体内共附生细菌有关,然而,这些细菌在珊瑚宿主适应环境变化过程中所起的作用尚不清楚。对珊瑚共附生细菌进行纯培养,探究其生物功能和生态作用,是解析珊瑚宿主环境适应机理的重要途径。【目的】研究热耐受性不同的2种造礁珊瑚共附生可培养潜在耐热细菌多样性和功能,为理解珊瑚适应环境的能力提供新的认识。【方法】从涠洲岛选取2种热耐受性差异显著的霜鹿角珊瑚(Acropora pruinosa)和丛生盔形珊瑚(Galaxea fascicularis)为研究对象,采用2216E、海水R2A和海水GYP这3种琼脂培养基,于32℃(珊瑚热耐受阈值)培养条件下对珊瑚共附生潜在耐热细菌进行分离培养,对分离菌株进行16S rRNA基因测序和序列相似性分析。选取代表菌株进行热耐受性检验,并利用平板对峙法进行抗菌活性检测。【结果】2种造礁珊瑚共附生可培养潜在耐热细菌的多样性存在显著差异。从热敏型的霜鹿角珊瑚中获得44株细菌,隶属于4个门22个属,其中弧菌属(Vibrio)、假交替单胞菌属(Pseudoalteromonas)和Tenacibaculum为优势属;从热耐...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号