首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Experimental manipulation and other lines of evidence indicate that the lens plays a prominent role in the growth and differentiation of the vertebrate eye. Here we describe a lens transplantation method for studying the role of the lens in teleost eye development. The method involves three steps: (1) preparing embryos for the operations by embedding them in agar, (2) microsurgery with tungsten needles to remove the lens from a donor embryo and insert it into the optic cup of a host embryo lacking its own lens, and (3) a recovery period allowing surface ectoderm to close over the wound left by insertion of the lens into the host embryo. A movie illustrating the method can be found at http://www.life.umd.edu/labs/jeffery. A troubleshooting guide and summary of assays for evaluating the development of the transplanted lens and its effects on other eye parts, including the retina, are presented. Finally, some current applications of the lens transplantation method are briefly described: (1) determination of the autonomy of zebrafish lens mutants and (2) investigation of the role of the lens in eye degeneration in the cavefish Astyanax. The transplantation method will help characterize the mechanisms through which vertebrate eye development is regulated by the lens.  相似文献   

2.
The formation of an internal barrier to the diffusion of small molecules in the lens during middle age is hypothesized to be a key event in the development of age-related nuclear (ARN) cataract. Changes in membrane lipids with age may be responsible. In this study, we investigated the effect of age on the distribution of sphingomyelins, the most abundant lens phospholipids. Human lens sections were initially analyzed by MALDI mass spectrometry imaging. A distinct annular distribution of the dihydrosphingomyelin, DHSM (d18:0/16:0), in the barrier region was observed in 64- and 70-year-old lenses but not in a 23-year-old lens. An increase in the dihydroceramide, DHCer (d18:0/16:0), in the lens nucleus was also observed in the older lenses. These findings were supported by ESI mass spectrometry analysis of lipid extracts from lenses dissected into outer, barrier, and nuclear regions. A subsequent analysis of 18 lenses ages 20–72 years revealed that sphingomyelin levels increased with age in the barrier region until reaching a plateau at approximately 40 years of age. Such changes in lipid composition will have a significant impact on the physical properties of the fiber cell membranes and may be associated with the formation of a barrier.  相似文献   

3.
社鼠的年龄鉴定与种群年龄组成   总被引:28,自引:9,他引:19  
年龄组成是种群的重要特征之一。分析年龄组成中不同时期各年龄组数量的比例,有助于了解种群数量变动的规律。寿振黄等(1959)以臼齿齿根的分岐与否和前后根的长度作为红背(鼠平)的年龄标准。罗泽珣(1963)和诸葛阳等(1959、1978)分别用臼齿磨损程度和体重来划分黑线姬鼠的年龄。国外有以晶体干重为依据分析年龄组成,如Lord(1959),Adamczewska-Andrzejewska(1972),Geurley(1975),Yabe(1979)等分别对白尾兔(Cottontail rabbit)、黑线姬鼠(Apodemus agrarius)2种田鼠(Microtus pinetorumMicrotus montanus)、和褐家鼠(Rattus norvegicus)进行了不少工作。  相似文献   

4.
5.
During eye lens development, regulation of Wnt/β-catenin signaling is critical for two major processes: initially it must be silent in the lens placode for lens development to proceed, but subsequently it is required for maintenance of the lens epithelium. It is not known how these different phases of Wnt/β-catenin activity/inactivity are regulated. Secreted frizzled related protein-2 (Sfrp2), a putative Wnt-Fz antagonist, is expressed in lens placode and in lens epithelial cells and has been put forward as a candidate for regional Wnt/β-catenin pathway regulation. Here we show its closely-related isoform, Sfrp1, has a complimentary pattern of expression in the lens, being absent from the placode and epithelium but expressed in the fibers. As mice with single knockouts of Sfrp1 or Sfrp2 had no defects in lens formation, we examined lenses of Sfrp1 and Sfrp2 double knockout (DKO) mice and showed that they formed lens placode and subsequent lens structures. Consistent with this we did not observe ectopic TCF/Lef activity in lens placode of DKOs. This indicates that Sfrp1 and Sfrp2 individually, or together, do not constitute the putative negative regulator that blocks Wnt/β-catenin signaling during lens induction. In contrast, Sfrp1 and Sfrp2 appear to have a positive regulatory function because Wnt/β-catenin signaling in lens epithelial cells was reduced in Sfrp1 and Sfrp2 DKO mice. Lenses that formed in DKO mice were smaller than controls and exhibited a deficient epithelium. Thus Sfrps play a role in lens development, at least in part, by regulating aspects of Wnt/β-catenin signaling in lens epithelial cells.  相似文献   

6.
The influence of Lyn kinase on Na,K-ATPase in porcine lens epithelium   总被引:3,自引:0,他引:3  
Na,K-ATPase is essential for the regulation of cytoplasmic Na+ and K+ levels in lens cells. Studies on the intact lens suggest activation of tyrosine kinases may inhibit Na,K-ATPase function. Here, we tested the influence of Lyn kinase, a Src-family member, on tyrosine phosphorylation and Na,K-ATPase activity in membrane material isolated from porcine lens epithelium. Western blot studies indicated the expression of Lyn in lens cells. When membrane material was incubated in ATP-containing solution containing partially purified Lyn kinase, Na,K-ATPase activity was reduced by 38%. Lyn caused tyrosine phosphorylation of multiple protein bands. Immunoprecipitation and Western blot analysis showed Lyn treatment causes an increase in density of a 100-kDa phosphotyrosine band immunopositive for Na,K-ATPase 1 polypeptide. Incubation with protein tyrosine phosphatase 1B (PTP-1B) reversed the Lyn-dependent tyrosine phosphorylation increase and the change of Na,K-ATPase activity. The results suggest that Lyn kinase treatment of a lens epithelium membrane preparation is able to bring about partial inhibition of Na,K-ATPase activity associated with tyrosine phosphorylation of multiple membrane proteins, including the Na,K-ATPase 1 catalytic subunit. lens; Na,K-ATPase; tyrosine phosphorylation; Lyn  相似文献   

7.
Formation of lanthionine, a dehydroalanine crosslink, is associated with aging of the human lens and cataractogenesis. In this study we investigated whether modification of lens proteins by glutathione could proceed through an alternative pathway: that is, by the formation of a nonreducible thioether bond between protein and glutathione. Direct ELISA of the reduced water-soluble and water-insoluble lens proteins from human cataractous, aged and bovine lenses showed a concentration-dependent immunoreactivity toward human nonreducible glutathionyl-lens proteins only. The reduced water-insoluble cataractous lens proteins showed the highest immunoreactivity, while bovine lens protein exhibited no reaction. These data were confirmed by dot-blot analysis. The level of this modification ranged from 0.7 to 1.6 nmol/mg protein in water-insoluble proteins from aged and cataractous lenses. N-terminal amino acid determination in the reduced and alkylated lens proteins, performed by derivatization of these preparations with dansyl chloride followed by an exhaustive dialysis, acid hydrolysis and fluorescence detection of dansylated amino acids by RP-HPLC, showed that N-terminal glutamic acid was present in concentration of approximately 0.2 nmol/mg of lens protein. This evidence points out that at least some of the N-terminal amino groups of nonreducible glutathione in the reduced human lens proteins are not involved in a covalent bond formation. Since disulfides were not detected in the reduced and alkylated human lens proteins, GSH is most likely attached to lens proteins through thioether bonds. These results provide, for the first time, evidence that glutathiolation of human lens proteins can occur through the formation of nonreducible thioether bonds.  相似文献   

8.
Lens formation in mouse is critically dependent on proper development of the retinal neuroectoderm that is located close beneath the head surface ectoderm. Signaling from the prospective retina triggers lens‐specific gene expression in the surface‐ectoderm. Supression of canonical Wnt/β‐catenin signaling in the surface ectoderm is one of the prerequisites for lens development because, as we show here, ectopic Wnt activation in the retina and lens abrogates lens formation. Wnt inhibiton is mediated by signals coming from the retina but its exact mechanism is unknown. We show that Pax6 directly controls expression of several Wnt inhibitors such as Sfrp1, Sfrp2, and Dkk1 in the presumptive lens. In accordance, absence of Pax6 function leads to aberrant canonical Wnt activity in the presumptive lens that subsequently impairs lens development. Thus Pax6 is required for down‐regulation of canonical Wnt signaling in the presumptive lens ectoderm. genesis 48:86–95, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

9.
The functional consequence of the casein kinase I-catalyzed phosphorylation of the lens gap junctional protein connexin49 was investigated using a sheep primary lens cell culture system. To determine whether the phosphorylation of connexin49 catalyzed by endogenous casein kinase I results in an altered junctional communication between lens cells, the effect of the casein kinase I-specific inhibitor CKI-7 on Lucifer Yellow dye transfer between cells in the lens culture was examined. Dye transfer was analyzed in cultures of different ages because we have demonstrated previously that the expression of connexin49 increases as the cultures age while that of connexin43, which is likely not a substrate for casein kinase I, has been shown to decrease [Yang & Louis (1999) Invest. Ophthalmol. Vis. Sci. 41: 2568–2564]. In 9-day old lens cultures, in which gap junctions are composed primarily of connexin43, CKI-7 had little effect on the rate of dye transfer between lens cells. In contrast, treatment of 15-day and 28-day old cultures with CKI-7 resulted in a significant increase in the rate of dye transfer. Thus, the extent of this CKI-7-dependent increase in cell-to-cell communication was positively correlated with the level of expression of connexin49, the major casein kinase I substrate in lens plasma membranes. These results suggest that the casein kinase I-catalyzed phosphorylation of connexin49 decreases cell communication between connexin49-containing gap junctions in the lens. Received: 31 July 2000/Revised: 12 January 2001  相似文献   

10.
A male mouse displaying bilateral microphthalmia and cataract was found among the offspring of pregnant Slc: ICR mouse treated intraperitoneally with 10 mg/kg methylnitrosourea on gestational day 4. This mutant has been maintained by brother-sister mating. By the mating test with normal Slc: ICR mice, this character was revealed to be inherited by an autosomal single recessive gene. Linkage test with the brown locus showed that this mutant gene is linked with the B gene and mapped on chromosome 4. The histological study of the eyes of adult mutant mice revealed various abnormalities all over the eyes, especially in the lens and neural retina. Embryologically, the mutant mice showed persistent connection between the lens vesicle and the surface ectoderm by a cellular stalk, and also the formation of retinal infolding, in the early stages of eye development. Both were considered to be responsible for the consequent abnormal development and degradation of the lens. These results suggest that the mutant mouse we found may be an allele of the dysgenetic lens (dyl) reported by Sanyal and Hawkins.  相似文献   

11.
Fibroblast growth factor (FGF) signaling is necessary for both proliferation and differentiation of lens cells. However, the molecular mechanisms by which FGFs exert their effects on the lens remain poorly understood. In this study, we show that FGF-2 repressed the expression of lens-specific genes at the proliferative phase in primary cultured lens cells. Using transfected cells, we also found that the activity of L-Maf, a lens differentiation factor, is repressed by FGF/ERK signaling. L-Maf is shown to be phosphorylated by ERK, and introduction of mutations into the ERK target sites on L-Maf promotes its stabilization. The stable L-Maf mutant protein promotes the differentiation of lens cells from neural retina cells. Taken together, these results indicate that FGF/ERK signaling negatively regulates the function of L-Maf in proliferative lens cells and that stabilization of the L-Maf protein is important for lens fiber differentiation.  相似文献   

12.
13.
14.
The purpose of the study was to examine the zinc and iron content of human lenses in different types of cataract and to investigate the possible influence of diabetes on the zinc and iron content of the lens. Iron and zinc of 57 human lenses (28 corticonuclear cataracts and 29 mature cataracts with a mean age of 70.6±16.1 and 74.7±11.1 yr, 41 nondiabetics and 16 diabetics) were determined by atomic absorption spectroscopy. The zinc content of human lenses was significantly increased in mature cataracts compared to corticonuclear cataracts (0.51±0.33 vs 0.32±0.20 μmol/g dry mass, p=0.012). The iron content of mature cataracts was also higher than in corticonuclear cataracts (0.11±0.09 vs 0.07±0.05 μmol/g dry mass, p=0.071). Furthermore, a significant increase of the lens zinc content could be observed with increasing lens coloration (light brown 0.33±0.17 vs dark brown 0.52±0.35 μmol/g dry mass, p=0.032). Diabetic patients seem to have both increased zinc and iron contents in the lens compared to nondiabetic subjects (zinc: 0.45±0.42 vs 0.40±0.22 μmol/g dry mass; iron: 0.12±0.10 vs 0.08±0.05 μmol/g dry mass). These data suggest a possible influence of the lens zinc and iron content on the development of lens opacification. Especially advanced forms of cataract and dark brown colored lenses show significantly increased zinc and iron content.  相似文献   

15.
This study investigates the primary effect of the eye lens obsolescence (Elo) gene of the mouse. Morphological features of the Elo lens were defined as follows: (1) deficient elongation of lens fiber cells, (2) morphological abnormality of nuclei of lens fiber cells, (3) lack of eosinophilic granules in the central fiber cells and (4) rupture of lens capsule in the posterior region. We have immunohistologically examined, by means of an in vivo BrdU incorporation system, whether or not the Elo gene regulates cell proliferation during lens development. The lens fiber cells were morphologically abnormal in day 13 embryonic Elo lens. However, there were no significant differences in morphology or cell proliferation between normal and Elo lens epithelium until day 14 of gestation. After day 15, the total cell number in the Elo lens epithelium was significantly less than that in the normal, but the total numbers of S-phase cells in the two genotypes were not significantly different. The ratio of the total S-phase cell number to the total number of lens epithelial cells may be affected by the developmental stage, but not directly by the genotype. The genotype, however, may be having a direct influence at later ages because malformation of Elo lens fiber cells must cause reduction of the total number of lens epithelial cells in older embryos. Although, at 30 days old, Elo lens cells were externally extruded through the ruptured capsule into the vitreous cavity, BrdU-labelled lens epithelial cells were detectable. To investigate whether the Elo lens phenotype is determined by its own genotype or by its cellular environment, we produced aggregation chimeras between C3H-Elo/+(C/C) and BALB/c(c/c). Most lenses of BALB/c dominant chimeras were oval in shape without the ruptured lens capsule. However, they were opaque in the center and slightly smaller in size than normal. The lenses of C3H-Elo/+ dominant chimeras were morphologically similar to the Elo lens. Although normal nuclei were regularly arranged in the anterior region, Elo-type nuclei were located in the posterior region. Immunohistological staining by using anti-C3H strain-specific antibody demonstrated that the lens fiber cells with abnormal nuclei were derived only from C3H-Elo/+, not from BALB/c. These observations suggest that the primary effect of the Elo gene in the developing lens may be specific to the fiber cell differentiation rather than to the cell proliferation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

16.
Results are presented from experimental and theoretical studies of a space-charge lens for focusing a negative-ion beam. The space-charge field and the beam ion trajectories are numerically calculated for the lens used in the experiments. The results of calculations are compared with the experimental data. It is shown theoretically and experimentally that the proposed device allows one to achieve the main operating conditions of the space-charge lens: the inertial confinement of positive ions and the removal of electrons by an external electric field. The focusing field of the lens attains ~100 V/cm, which provides a focal length of <20 cm.  相似文献   

17.
18.
Homeostasis in the lens is dependent on an extensive network of cell-to-cell gap junctional channels. Gap junction-mediated intercellular coupling (GJIC) is higher in the equatorial region of the lens than at either pole, an asymmetry believed essential for lens transparency. Primary cultures of embryonic chick lens epithelial cells up-regulate GJIC in response to purified fibroblast growth factor (FGF)1/2 or to medium conditioned by vitreous bodies, the major reservoir of factors (including FGF) for the lens equator. We show that purified bone morphogenetic protein (BMP)2, -4, and -7 also up-regulate GJIC in these cultures. BMP2, -4, or both are present in vitreous body conditioned medium, and BMP4 and -7 are endogenously expressed by lens cells. Remarkably, lens-derived BMP signaling is required for up-regulation of GJIC by purified FGF, and sufficient for up-regulation by vitreous humor. This is the first demonstration of an obligatory interaction between FGF and BMPs in postplacode lens cells, and of a role for FGF/BMP cross-talk in regulating GJIC in any cell type. Our results support a model in which the angular gradient in GJIC in the lens, and thus proper lens function, is dependent on signaling between the FGF and BMP pathways.  相似文献   

19.
Zeta-crystallin/quinone reductase (CRYZ) is an NADPH oxidoreductase expressed at very high levels in the lenses of two groups of mammals: camelids and some hystricomorph rodents. It is also expressed at very low levels in all other species tested. Comparative analysis of the mechanisms mediating the high expression of this enzyme/crystallin in the lens of the Ilama (Lama guanacoe) and the guinea pig (Cavia porcellus) provided evidence for independent recruitment of this enzyme as a lens crystallin in both species and allowed us to elucidate for the first time the mechanism of lens recruitment of an enzyme- crystallin. The data presented here show that in both species such recruitment most likely occurred through the generation of new lens promoters from nonfunctional intron sequences by the accumulation of point mutations and/or small deletions and insertions. These results further support the idea that recruitment of CRYZ resulted from an adaptive process in which the high expression of CRYZ in the lens provides some selective advantage rather than from a purely neutral evolutionary process.   相似文献   

20.
ABSTRACT: BACKGROUND: Clinical practice guidelines are developed to improve the quality of healthcare. However, clinical guidelines may contribute to health inequities experienced by disadvantaged groups. This study uses an equity lens developed by the International Clinical Epidemiology Network (INCLEN) to examine how well clinical guidelines address inequities experienced by individuals with intellectual disabilities. METHODS: Nine health problems relevant to the health inequities experienced by persons with intellectual disabilities were selected. Clinical guidelines on these disorders were identified from across the world. The INCLEN equity lens was used as the basis for a purposedesigned, semistructured data collection tool. Two raters independently examined each guideline and completed the data collection tool. The data extracted by each rater were discussed at a research group consensus conference and agreement was reached on a final equity lens rating for each guideline. RESULTS: Thirty-six guidelines were identified, one of which (2.8%) explicitly excluded persons with intellectual disabilities. Of the remaining 35, six (17.1%) met the first criterion of the equity lens, identifying persons with intellectual disabilities at high risk for the specific health problem. Eight guidelines (22.9%) contained any content on intellectual disabilities. Six guidelines addressed the fourth equity lens criterion, by giving specific consideration to the barriers to implementation of the guideline in disadvantaged populations. There were no guidelines that addressed the second, third, and fifth equity lens criteria. CONCLUSIONS: The equity lens is a useful tool to systematically examine whether clinical guidelines address the health needs and inequities experienced by disadvantaged groups. Clinical guidelines are likely to further widen the health inequities experienced by persons with intellectual disabilities, and other disadvantaged groups, by being preferentially advantageous to the general population. There is a need to systematically incorporate methods to consider disadvantaged population groups into the processes used to develop clinical guidelines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号