首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The steroidogenic acute regulatory (StAR) protein, a novel phosphoprotein, is a crucial factor involved in intramitochondrial cholesterol transportation, the rate-limiting step in steroidogenesis. The present investigations were undertaken to elucidate involvement of thyroid hormone and StAR protein in the regulation of steroidogenesis in mouse Leydig cells. Treatment of cells with triiodothyronine (T3) coordinately augmented the levels of StAR protein, StAR mRNA, and steroid production, and these responses were progressively dependent on expression of steroidogenic factor 1 (SF-1). With regard to steroidogenesis and StAR expression, the T3 response requires both on-going mRNA and protein synthesis. In addition, the effects of T3 were acutely modulated at the steroidogenic machinery and luteinizing hormone receptor (LHR) function, while these levels were suppressed following longer periods of exposure to T3. Furthermore, the inhibition of SF-1 expression by DAX-1 markedly abolished T3-mediated StAR expression in a time frame, which was consistent with decreased steroid biosynthesis. Specific involvement of SF-1 was further confirmed by assessing the 5′-flanking region of the mouse StAR gene, which identified a region between −254 and −110 bp that was essential for T3 function. Importantly, it was found that the SF-1 binding site at position −135 bp of the 5′-flanking region was greatly involved in T3-mediated reporter activity. Electrophoretic mobility shift assays (EMSA) also demonstrated involvement of SF-1 in T3 function. The relevance of T3-mediated LHR function was investigated in mice rendered hypo-and hyperthyroid, which accounted for up-regulation in the former and down-regulation in the latter group, respectively. These findings demonstrate a key role of thyroid hormone in maintaining mouse Leydig cell function, where thyroid hormone and StAR protein coordinately regulate steroid hormone biosynthesis.  相似文献   

4.
5.
6.
7.
8.
9.
Di-n-butyl phthalate (DBP) is one of the most dominant phthalate esters and is widely distributed environmental contaminant. Although previous studies have demonstrated that DBP led to a variety of male reproductive abnormalities similar to those caused by androgen receptor antagonists, DBP and its active metabolite, mono-butyl phthalate (MBP), have been demonstrated no affinity for the androgen receptor, but rather exert anti-androgenic effect by altering testosterone biosynthesis. Furthermore, all these results were obtained from very high administrations of DBP or MBP. The purpose of this study was to determine the onset and the site of action of relatively low concentration of MBP on steroidogenesis in vitro. The mouse Leydig tumor cells (MLTC-1) was employed as a cellular model to investigate the effect of MBP on steroidogenesis. Various concentrations of MBP (1, 10, 100 and 1000nmol/l) and its solvent dimethyl sulfoxide (DMSO) were added to the medium for 24h followed by stimulation of some compounds such as human chorionic gonadotrophin (hCG), cholera toxin (CT), forskolin, cAMP analog 8-Br-cAMP, 22(R)-hydroxycholesterol (22R-HC) and pregnenolone. Progesterone in the medium and amounts of intracellular cAMP were measured by RIA. Expression of steroidogenic acute regulatory protein (StAR) was monitored by real-time PCR and Western blotting. The results revealed that the increases of progesterone production in the presence of hCG, CT, forskolin and 8-Br-cAMP were augmented by MBP. In contrast, the levels of intracellular cAMP exhibited no statistical significance when MLTC-1 cells were treated as above. These results implied that the site in the steroid biosynthesis pathway affected by MBP occurs after PKA activation in MLTC-1 cells. Moreover, supplementing the medium with 22R-HC and pregnenolone as progesterone precursors for P450 side chain cleavage enzyme (P450scc) and 3beta-hydroxysteroid dehydrogenase (3beta-HSD), respectively, resulted in no rise in progesterone production, making clear that MBP did not influence the P450scc and 3beta-HSD but on the rate-limiting step, cholesterol transportation into mitochondria. In fact, the above results were confirmed by the upgraded StAR expression in MBP-treated cells. These data support that MBP promotes steroid hormone production by facilitating StAR expression in MLTC-1 cells.  相似文献   

10.
Steroidogenic acute regulatory protein (StAR) is essential for adrenal and gonadal steroidogenesis, stimulating the translocation of cholesterol to the inner mitochondrial membrane where steroidogenesis commences. StAR mutations in humans cause congenital lipoid adrenal hyperplasia (lipoid CAH), an autosomal recessive condition with severe deficiencies of all classes of steroid hormones. We previously described StAR knockout mice that mimic many features of lipoid CAH patients. By keeping StAR knockout mice alive with corticosteroid replacement, we now examine the temporal effects of StAR deficiency on the structure and function of steroidogenic tissues. The adrenal glands, affected most severely at birth, exhibited progressive increases in lipid deposits with aging. The testes of newborn StAR knockout mice contained scattered lipid deposits in the interstitial region, presumably in remnants of fetal Leydig cells. By 8 weeks of age, the interstitial lipid deposits worsened considerably and were associated with Leydig cell hyperplasia. Despite these changes, germ cells in the seminiferous tubules appeared intact histologically, suggesting that the StAR knockout mice retained some capacity for androgen biosynthesis. Sperm maturation was delayed, and the germ cells exhibited histological features of apoptosis, consistent with suboptimal androgen production. Immediately after birth, the ovaries of StAR knockout mice appeared normal. After the time of normal puberty, however, prominent lipid deposits accumulated in the interstitial region, accompanied by marked luteinization of stromal cells and incomplete follicular maturation that ultimately culminated in premature ovarian failure. These studies provide the first systematic evaluation of the developmental consequences of StAR deficiency in the various steroidogenic organs.  相似文献   

11.
12.
13.
In order to study the effect of phosphorylation on the function of the steroidogenic acute regulatory protein (StAR), 10 putative phosphorylation sites were mutated in the hamster StAR. In pcDNA3.1-StAR transfected COS-1 cells, decreases in basal activity were found for the mutants S55A, S185A and S194A. Substitution of S185 by D or E to mimic phosphorylation resulted in decreased activity for all mutants; we concluded that S185 was not a phosphorylation site and we hypothesized that mutations on S185 created StAR conformational changes resulting in a decrease in its binding affinity for cholesterol. In contrast, the mutation S194D resulted in an increase in StAR activity. We have calculated the relative rate of pregnenolone formation (App. Vmax) in transfected COS-1 cells with wild type (WT) and mutant StAR-pcDNA3.1 under control and (Bu)2-cAMP stimulation. The App. Vmax values refer to the rate of cholesterol transported and metabolized by the cytochrome P450scc enzyme present in the inner mitochondrial membrane. The App. Vmax was 1.61 ± 0.28 for control (Ctr) WT StAR and this value was significantly increased to 4.72 ± 0.09 for (Bu)2-cAMP stimulated preparations. App. Vmax of 5.53 (Ctr) and 4.82 ((Bu)2-cAMP) found for S194D StAR preparations were similar to that of the WT StAR stimulated preparations. At equal StAR quantity, an anti-phospho-(S/T) PKA substrate antibody revealed four times more phospho-(S/T) in (Bu)2-cAMP than in control preparations. The intensity of phosphorylated bands was decreased for the S55A, S56A and S194A mutants and it was completely abolished for the S55A/S56A/S194A mutant. StAR activity of control and stimulated preparations were diminished by 73 and 72% for the mutant S194A compared to 77 and 83% for the mutant S55A/S56A/S194A. The remaining activity appears to be independent of phosphorylation at PKA sites and could be due to the intrinsic activity of non-phosphorylated StAR or to an artefact due to the pharmacological quantity of StAR expressed in COS-1. In conclusion we have shown that (Bu)2-cAMP provokes an augmentation of both the quantity and activity of StAR, and that an enhancement in StAR phosphorylation increases its activity. The increased quantity of StAR upon (Bu)2-cAMP stimulation could be due to an augmentation of its mRNA or protein synthesis stability, or both; this is yet to be determined.  相似文献   

14.
Overexpressing StAR (a mitochondrial cholesterol transporter) increases (>5-fold) the rate of 27-hydroxylation of cholesterol and the rates of bile acid synthesis in primary rat hepatocytes; suggesting that the transport of cholesterol into mitochondria is rate-limiting for bile acid biosynthesis via the CYP27A1 initiated 'acidic' pathway. Our objective was to determine the level of StAR expression in human liver and whether changes in StAR would correlate with changes in CYP27A1 activity/bile acid synthesis rates in human liver tissues. StAR mRNA and protein were detected in primary human hepatocytes and HepG2 cells by RT-PCR/Northern analysis and by Western analysis, respectively. In immunocompetition assays, liver StAR was competed away with the addition of purified human adrenal StAR. Overexpressing CYP27A1 in both cell types led to >2-fold increases in liver StAR concentration. StAR protein levels also increased approximately 2-fold with the addition of 27-hydroxycholesterol to HepG2 cell culture medium. Overexpressing StAR increased the rates of 27-hydroxylation of cholesterol/bile acid synthesis in both cell lines and increased intracellular levels of 27-hydroxycholesterol. In conclusion, human liver cells contain regulable StAR protein whose level of expression appears capable of regulating cellular cholesterol homeostasis, representing a potential therapeutic target in the management of hyperlipidemia.  相似文献   

15.
16.
The steroidogenic acute regulatory protein (StAR) mediates the acute stimulation of steroid synthesis by tropic hormones in steroidogenic cells. StAR interacts with the outer mitochondrial membrane and facilitates the rate-limiting transfer of cholesterol to the inner mitochondrial membrane where cytochrome P-450scc converts this cholesterol into pregnenolone. We tested the ability of N-62 StAR to transfer cholesterol from donor vesicles containing cholesterol but no cytochrome P-450scc to acceptor vesicles containing P-450scc but no cholesterol, using P-450scc activity as a reporter of the cholesterol content of synthetic phospholipid vesicles. N-62 StAR stimulated P-450scc activity in acceptor vesicles 5-10-fold following the addition of donor vesicles. Transfer of cholesterol to acceptor vesicles was rapid and sufficient to maintain a linear rate of pregnenolone synthesis for 10 min. The effect of N-62 StAR in stimulating P-450scc activity was specific for cholesterol transfer and was not due to vesicle fusion or P-450scc exchange between vesicles. Maximum stimulation of P-450scc activity in acceptor vesicles required preincubation of N-62 StAR with phospholipid vesicles prior to adding donor vesicles. The amount of N-62 StAR causing half-maximum stimulation of P-450scc activity in acceptor vesicles was 1.9 microm. Half-maximum stimulation required more than a 10-fold higher concentration of R182L N-62 StAR, a mutant associated with congenital lipoid adrenal hyperplasia. N-62 StAR-mediated transfer of cholesterol between vesicles showed low dependence on the cholesterol concentration in the donor vesicles. Thus StAR can transfer cholesterol between synthetic membranes without other protein components found in mitochondria.  相似文献   

17.
Steroidogenesis depends on the delivery of cholesterol from the outer to the inner mitochondrial membrane by StAR (steroidogenic acute regulatory protein). However, the mechanism by which StAR binds to cholesterol and its importance in cholesterol transport are under debate. According to our proposed molecular model, StAR possesses a hydrophobic cavity, which can accommodate one cholesterol molecule. In the bound form, cholesterol interacts with hydrophobic side-chains located in the C-terminal alpha-helix 4, thereby favouring the folding of this helix. To verify this model experimentally, we have characterized the in vitro activity, overall structure, thermodynamic stability and cholesterol-binding affinity of StAR lacking the N-terminal 62 amino acid residues (termed N-62 StAR). This mature form is biologically active and has a well-defined tertiary structure. Addition of cholesterol to N-62 StAR led to an increase in the alpha-helical content and T degrees (melting temperature), indicating the formation of a stable complex. However, the mutation F267Q, which is located in the C-terminal helix interface lining the cholesterol-binding site, reduced the biological activity of StAR. Furthermore, the cholesterol-induced thermodynamic stability and the binding capacity of StAR were significantly diminished in the F267Q mutant. Titration of StAR with cholesterol yielded a 1:1 complex with an apparent K(D) of 3 x 10(-8). These results support our model and indicate that StAR can readily bind to cholesterol with an apparent affinity that commensurates with monomeric cholesterol solubility in water. The proper function of the C-terminal alpha-helix is essential for the binding process.  相似文献   

18.

Context

Steroidogenic acute regulatory protein (StAR) is crucial for transport of cholesterol to mitochondria where biosynthesis of steroids is initiated. Loss of StAR function causes lipoid congenital adrenal hyperplasia (LCAH).

Objective

StAR gene mutations causing partial loss of function manifest atypical and may be mistaken as familial glucocorticoid deficiency. Only a few mutations have been reported.

Design

To report clinical, biochemical, genetic, protein structure and functional data on two novel StAR mutations, and to compare them with published literature.

Setting

Collaboration between the University Children''s Hospital Bern, Switzerland, and the CIBERER, Hospital Vall d''Hebron, Autonomous University, Barcelona, Spain.

Patients

Two subjects of a non-consanguineous Caucasian family were studied. The 46,XX phenotypic normal female was diagnosed with adrenal insufficiency at the age of 10 months, had normal pubertal development and still has no signs of hypergonodatropic hypogonadism at 32 years of age. Her 46,XY brother was born with normal male external genitalia and was diagnosed with adrenal insufficiency at 14 months. Puberty was normal and no signs of hypergonadotropic hypogonadism are present at 29 years of age.

Results

StAR gene analysis revealed two novel compound heterozygote mutations T44HfsX3 and G221S. T44HfsX3 is a loss-of-function StAR mutation. G221S retains partial activity (∼30%) and is therefore responsible for a milder, non-classic phenotype. G221S is located in the cholesterol binding pocket and seems to alter binding/release of cholesterol.

Conclusions

StAR mutations located in the cholesterol binding pocket (V187M, R188C, R192C, G221D/S) seem to cause non-classic lipoid CAH. Accuracy of genotype-phenotype prediction by in vitro testing may vary with the assays employed.  相似文献   

19.
20.
Lindane, the gamma isomer of hexachlorocyclohexane (HCH), is one of the oldest synthetic pesticides still in use worldwide. Numerous reports have shown that this pesticide adversely affects reproductive function in animals. Although the pathogenesis of reproductive dysfunction is not yet fully understood, recent reports indicate that lindane can directly inhibit adrenal and gonadal steroidogenesis. Because Leydig cells play a pivotal role in male reproductive function through the production of testosterone, the mouse MA-10 Leydig tumor cell line was used to assess the potential effects of gamma-HCH and its isomers, alpha-HCH and delta-HCH, on steroid production, steroidogenic enzyme expression and activity, and steroidogenic acute regulatory (StAR) protein expression. StAR mediates the rate-limiting and acutely regulated step in hormone-stimulated steroidogenesis, the intramitochondrial transfer of cholesterol to the P450(scc) enzyme. Our studies demonstrate that alpha-, delta-, and gamma-HCH inhibited dibutyryl ([Bu](2)) cAMP-stimulated progesterone production in MA-10 cells in a dosage-dependent manner without affecting general protein synthesis; and protein kinase A or steroidogenic enzyme expression, activity, or both. In contrast, each of these isomers dramatically reduced (Bu)(2)cAMP-stimulated StAR protein levels. Therefore, our results are consistent with the hypothesis that alpha-, delta-, and gamma-HCH inhibited steroidogenesis by reducing StAR protein expression, an action that may contribute to the pathogenesis of lindane-induced reproductive dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号