首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In eukaryotic cells, a major proportion of the cellular proteins localize to various subcellular organelles where they are involved in organelle-specific cellular processes. Thus, the localization of a particular protein in the cell is an important part of understanding the physiological role of the protein in the cell. Various approaches such as subcellular fractionation, immunolocalization and live imaging have been used to define the localization of organellar proteins. Of these various approaches, the most powerful one is the live imaging because it can show in vivo dynamics of protein localization depending on cellular and environmental conditions without disturbing cellular structures. However, the live imaging requires the ability to detect the organelles in live cells. In this study, we report generation of a new set of transgenic Arabidopsis plants using various organelle marker proteins fused to a fluorescence protein, monomeric Cherry (mCherry). All these markers representing different subcellular organelles such as chloroplasts, mitochondria, peroxisomes, endoplasmic reticulum (ER) and lytic vacuole showed clear and specific signals regardless of the cell types and tissues. These marker lines can be used to determine localization of organellar proteins by colocalization and also to study the dynamics of organelles under various developmental and environmental conditions.  相似文献   

2.
In the crowded environment of human cells, folding of nascent polypeptides and refolding of stress-unfolded proteins is error prone. Accumulation of cytotoxic misfolded and aggregated species may cause cell death, tissue loss, degenerative conformational diseases, and aging. Nevertheless, young cells effectively express a network of molecular chaperones and folding enzymes, termed here “the chaperome,” which can prevent formation of potentially harmful misfolded protein conformers and use the energy of adenosine triphosphate (ATP) to rehabilitate already formed toxic aggregates into native functional proteins. In an attempt to extend knowledge of chaperome mechanisms in cellular proteostasis, we performed a meta-analysis of human chaperome using high-throughput proteomic data from 11 immortalized human cell lines. Chaperome polypeptides were about 10 % of total protein mass of human cells, half of which were Hsp90s and Hsp70s. Knowledge of cellular concentrations and ratios among chaperome polypeptides provided a novel basis to understand mechanisms by which the Hsp60, Hsp70, Hsp90, and small heat shock proteins (HSPs), in collaboration with cochaperones and folding enzymes, assist de novo protein folding, import polypeptides into organelles, unfold stress-destabilized toxic conformers, and control the conformal activity of native proteins in the crowded environment of the cell. Proteomic data also provided means to distinguish between stable components of chaperone core machineries and dynamic regulatory cochaperones.  相似文献   

3.
The folding and assembly of proteins is essential for protein function, the long-term health of the cell, and longevity of the organism. Historically, the function and regulation of protein folding was studied in vitro, in isolated tissue culture cells and in unicellular organisms. Recent studies have uncovered links between protein homeostasis (proteostasis), metabolism, development, aging, and temperature-sensing. These findings have led to the development of new tools for monitoring protein folding in the model metazoan organism Caenorhabditis elegans. In our laboratory, we combine behavioral assays, imaging and biochemical approaches using temperature-sensitive or naturally occurring metastable proteins as sensors of the folding environment to monitor protein misfolding. Behavioral assays that are associated with the misfolding of a specific protein provide a simple and powerful readout for protein folding, allowing for the fast screening of genes and conditions that modulate folding. Likewise, such misfolding can be associated with protein mislocalization in the cell. Monitoring protein localization can, therefore, highlight changes in cellular folding capacity occurring in different tissues, at various stages of development and in the face of changing conditions. Finally, using biochemical tools ex vivo, we can directly monitor protein stability and conformation. Thus, by combining behavioral assays, imaging and biochemical techniques, we are able to monitor protein misfolding at the resolution of the organism, the cell, and the protein, respectively.  相似文献   

4.
In eukaryotic cells consisting of many different types of organelles, targeting of organellar proteins is one of the most fundamental cellular processes. Proteins belonging to the endoplasmic reticulum (ER), chloroplasts and mitochondria are targeted individually from the cytosol to their cognate organelles. As the targeting to these organelles occurs in the cytosol during or after translation, the most crucial aspect is how specific targeting to these three organelles can be achieved without interfering with other targeting pathways. For these organelles, multiple mechanisms are used for targeting proteins, but the exact mechanism used depends on the type of protein and organelle, the location of targeting signals in the protein and the location of the protein in the organelle. In this review, we discuss the various mechanisms involved in protein targeting to the ER, chloroplasts and mitochondria, and how the targeting specificity is determined for these organelles in plant cells .  相似文献   

5.
Transmissible spongiform encephalopathies are associated with the conversion of cellular prion protein, PrP(C), into a misfolded oligomeric form, PrP(Sc). Here we have examined the kinetics of folding and unfolding reactions for the recombinant human prion protein C-terminal fragment 90-231 at pH 4.8 and 7.0. The stopped-flow data provide clear evidence for the population of an intermediate on the refolding pathway of the prion protein as indicated by a pronounced curvature in chevron plots and the presence of significant burst phase amplitude in the refolding kinetics. In addition to its role in the normal prion protein folding, this intermediate likely represents a crucial monomeric precursor of the pathogenic PrP(Sc) isoform.  相似文献   

6.
Defects in organellar translation are the underlying cause of a number of mitochondrial diseases, including diabetes, deafness, encephalopathy, and other mitochondrial myopathies. The most common causes of these diseases are mutations in mitochondria-encoded tRNAs. It has recently become apparent that mutations in nuclear-encoded components of the mitochondrial translation machinery, such as aminoacyl-tRNA synthetases (aaRSs), can also lead to disease. In some cases, mutations can be directly linked to losses in enzymatic activity; however, for many, their effect is unknown. To investigate how aaRS mutations impact function without changing enzymatic activity, we chose nonsynonymous single-nucleotide polymorphisms (nsSNPs) that encode residues distal from the active site of human mitochondrial phenylalanyl-tRNA synthetase. The phenylalanyl-tRNA synthetase variants S57C and N280S both displayed wild-type aminoacylation activity and stability with respect to their free energies of unfolding, but were less stable at low pH. Mitochondrial proteins undergo partial unfolding/refolding during import, and both S57C and N280S variants retained less activity than wild type after refolding, consistent with their reduced stability at low pH. To examine possible defects in protein folding in other aaRS nsSNPs, we compared the refolding of the human mitochondrial leucyl-tRNA synthetase variant H324Q to that of wild type. The H324Q variant had normal activity prior to unfolding, but displayed a refolding defect resulting in reduced aminoacylation compared to wild type after renaturation. These data show that nsSNPs can impact mitochondrial translation by changing a biophysical property of a protein (in this case refolding) without affecting the corresponding enzymatic activity.  相似文献   

7.
The study of protein subcellular localization is important to elucidate protein function. Even in well-studied organisms such as yeast, experimental methods have not been able to provide a full coverage of localization. The development of bioinformatic predictors of localization can bridge this gap. We have created a Bayesian network predictor called PSLT2 that considers diverse protein characteristics, including the combinatorial presence of InterPro motifs and protein interaction data. We compared the localization predictions of PSLT2 to high-throughput experimental localization datasets. Disagreements between these methods generally involve proteins that transit through or reside in the secretory pathway. We used our multi-compartmental predictions to refine the localization annotations of yeast proteins primarily by distinguishing between soluble lumenal proteins and soluble proteins peripherally associated with organelles. To our knowledge, this is the first tool to provide this functionality. We used these sub-compartmental predictions to characterize cellular processes on an organellar scale. The integration of diverse protein characteristics and protein interaction data in an appropriate setting can lead to high-quality detailed localization annotations for whole proteomes. This type of resource is instrumental in developing models of whole organelles that provide insight into the extent of interaction and communication between organelles and help define organellar functionality.  相似文献   

8.
A mammalian organelle map by protein correlation profiling   总被引:18,自引:0,他引:18  
Foster LJ  de Hoog CL  Zhang Y  Zhang Y  Xie X  Mootha VK  Mann M 《Cell》2006,125(1):187-199
  相似文献   

9.
During aging, oxidized, misfolded, and aggregated proteins accumulate in cells, while the capacity to deal with protein damage declines severely. To cope with the toxicity of damaged proteins, cells rely on protein quality control networks, in particular proteins belonging to the family of heat‐shock proteins (HSPs). As safeguards of the cellular proteome, HSPs assist in protein folding and prevent accumulation of damaged, misfolded proteins. Here, we compared the capacity of all Drosophila melanogaster small HSP family members for their ability to assist in refolding stress‐denatured substrates and/or to prevent aggregation of disease‐associated misfolded proteins. We identified CG14207 as a novel and potent small HSP member that exclusively assisted in HSP70‐dependent refolding of stress‐denatured proteins. Furthermore, we report that HSP67BC, which has no role in protein refolding, was the most effective small HSP preventing toxic protein aggregation in an HSP70‐independent manner. Importantly, overexpression of both CG14207 and HSP67BC in Drosophila leads to a mild increase in lifespan, demonstrating that increased levels of functionally diverse small HSPs can promote longevity in vivo.  相似文献   

10.
Kang BH  Plescia J  Dohi T  Rosa J  Doxsey SJ  Altieri DC 《Cell》2007,131(2):257-270
Molecular chaperones, especially members of the heat shock protein 90 (Hsp90) family, are thought to promote tumor cell survival, but this function is not well understood. Here, we show that mitochondria of tumor cells, but not most normal tissues, contain Hsp90 and its related molecule, TRAP-1. These chaperones interact with Cyclophilin D, an immunophilin that induces mitochondrial cell death, and antagonize its function via protein folding/refolding mechanisms. Disabling this pathway using novel Hsp90 ATPase antagonists directed to mitochondria causes sudden collapse of mitochondrial function and selective tumor cell death. Therefore, Hsp90-directed chaperones are regulators of mitochondrial integrity, and their organelle-specific antagonists may provide a previously undescribed class of potent anticancer agents.  相似文献   

11.
Molecular Chaperones and Mitochondrial Protein Folding   总被引:7,自引:0,他引:7  
Precursor proteins destined for the mitochondrial matrix traverse inner and outer organelle membranes in an extended conformation. Translocation events are therefore integrally coupled to the processes of protein unfolding in the cytosol and protein refolding in the matrix. To successfully import proteins from the cytoplasm into mitochondria, cells have recruited a variety of molecular chaperone systems and folding catalysts. Within the organelles, mitochondrial Hsp70 (mt-Hsp70) is a major player in this process and exerts multiple functions. First, mt-Hsp70 binds together with cohort proteins to incoming polypeptide chains, thus conferring unidirectionality on the translocation process, and then assists in their refolding. A subset of imported proteins requires additional assistance by chaperonins of the Hsp60/Hsp10 family. Protein folding occurs within the cavity of these cylindrical complexes. A productive interaction of precursor proteins with molecular chaperones in the matrix is not only crucial for correct refolding and assembly, but also for processing of presequences, intramitochondrial sorting, and degradation of proteins. This review focuses on the role of mt-Hsp70 and Hsp60/Hsp10 in protein folding in the mitochondrial matrix and discusses recent findings on their molecular mechanism of action.  相似文献   

12.
The endoplasmic reticulum (ER) is a membranous organelle involved in calcium storage, lipid biosynthesis, protein folding and processing. Many patho-physiological conditions and pharmacological agents are known to perturb normal ER function and can lead to ER stress, which severely compromise protein folding mechanism and hence poses high risk of proteotoxicity. Upon sensing ER stress, the different stress signaling pathways interconnect with each other and work together to preserve cellular homeostasis. ER stress response is a part of the integrative stress response (ISR) and might play an important role in the pathogenesis of chronic neurodegenerative diseases, where misfolded protein accumulation and cell death are common. The initiation, manifestation and progression of ER stress mediated unfolded protein response (UPR) is a complex procedure involving multiple proteins, pathways and cellular organelles. To understand the cause and consequences of such complex processes, implementation of an integrative holistic approach is required to identify novel players and regulators of ER stress. As multi-omics data-based systems analyses have shown potential to unravel the underneath molecular mechanism of complex biological systems, it is important to emphasize the utility of this approach in understanding the ER stress biology. In this review we first discuss the ER stress signaling pathways and regulatory players, along with their inter-connectivity. We next highlight the importance of systems and network biology approaches using multi-omics data in understanding ER stress mediated cellular responses. This report would help advance our current understanding of the multivariate spatial interconnectivity and temporal dynamicity of ER stress.  相似文献   

13.
The native serpin fold is metastable and possesses the inherent ability to convert into more stable, but inactive, conformations. In order to understand why serpins attain the native fold instead of other more thermodynamically favourable folds we have investigated the presence of residual structure within denatured antichymotrypsin (ACT). Through mutagenesis we created a single tryptophan variant of ACT in which a Trp residue (276) is situated on the H-helix, located within a region known as the B/C barrel. The presence of residual structure around Trp 276 in 5 M guanidine hydrochloride (GdnHCl) was shown by fluorescence and circular dichroism spectroscopy and fluorescence lifetime experiments. The residual structure was disrupted in the presence of 5 M guanidine thiocyanate (GdnSCN). Protein refolding studies showed that significant refolding could be achieved from the GdnHCl denatured state but not the GdnSCN denatured form. The implications of these data on the folding and misfolding of the serpin superfamily are discussed.  相似文献   

14.
Oxidative modifications to cellular proteins are critical in mediating redox-sensitive processes such as autophagy, the antioxidant response, and apoptosis. The proteins that become modified by reactive species are often compartmentalized to specific organelles or regions of the cell. Here, we detail protocols for identifying the subcellular protein targets of lipid oxidation and for linking protein modifications with biological responses such as autophagy. Fluorophores such as BODIPY-labeled arachidonic acid or BODIPY-conjugated electrophiles can be paired with organelle-specific probes to identify specific biological processes and signaling pathways activated in response to oxidative stress. In particular, we demonstrate “negative” and “positive” labeling methods using BODIPY-tagged reagents for examining oxidative modifications to protein nucleophiles. The protocol describes the use of these probes in slot immunoblotting, quantitative Western blotting, in-gel fluorescence, and confocal microscopy techniques. In particular, the use of the BODIPY fluorophore with organelle- or biological process-specific dyes and chromophores is highlighted. These methods can be used in multiple cell types as well as isolated organelles to interrogate the role of oxidative modifications in regulating biological responses to oxidative stress.  相似文献   

15.
The Hsp70 chaperone system is the major molecular chaperone system that assists protein-folding processes in all cells. To understand these processes, we analyzed the kinetic characteristics of the Escherichia coli homologs of this chaperone system during folding of a denatured protein using computer simulations and compared the results with in vitro refolding experiments. Rate constants used for the model were derived from recent literature or were determined and scrutinized for their applicability to the refolding reaction. Our simulation results are consistent with reported laboratory experiments, not only simulating the refolding reaction of wild-type proteins but also the behavior of mutant variants. Variation of kinetic parameters and concentrations of components of the Hsp70 system demonstrate the robustness of the chaperone system in assisting protein folding. Furthermore, the importance of the synergistic stimulation of the ATPase activity of Hsp70 is demonstrated. The limitations of our kinetic model indicate sore spots in our understanding of this chaperone system. Our model provides a platform for further research on chaperone action and the mechanism of chaperone-assisted refolding of denatured proteins.  相似文献   

16.
Identification of small non-coding RNAs from mitochondria and chloroplasts   总被引:4,自引:1,他引:3  
Small non-protein-coding RNAs (ncRNAs) have been identified in a wide spectrum of organisms ranging from bacteria to humans. In eukarya, systematic searches for ncRNAs have so far been restricted to the nuclear or cytosolic compartments of cells. Whether or not small stable non-coding RNA species also exist in cell organelles, in addition to tRNAs or ribosomal RNAs, is unknown. We have thus generated cDNA libraries from size-selected mammalian mitochondrial RNA and plant chloroplast RNA and searched for small ncRNA species in these two types of DNA-containing cell organelles. In total, we have identified 18 novel candidates for organellar ncRNAs in these two cellular compartments and confirmed expression of six of them by northern blot analysis or RNase A protection assays. Most candidate ncRNA genes map to intergenic regions of the organellar genomes. As found previously in bacteria, the presumptive ancestors of present-day chloroplasts and mitochondria, we also observed examples of antisense ncRNAs that potentially could target organelle-encoded mRNAs. The structural features of the identified ncRNAs as well as their possible cellular functions are discussed. The absence from our libraries of abundant small RNA species that are not encoded by the organellar genomes suggests that the import of RNAs into cell organelles is of very limited significance or does not occur at all.  相似文献   

17.
Group II chaperonins of archaea and eukaryotes are distinct from group I chaperonins of bacteria. Whereas group I chaperonins require the co-chaperonin Cpn-10 or GroES for protein folding, no co-chaperonin has been known for group II. The protein folding mechanism of group II chaperonins is not yet clear. To understand this mechanism, we examined protein refolding by the recombinant alpha or beta-subunit chaperonin homo-oligomer (alpha16mer and beta16mer) from a hyperthermoplilic archaeum, Thermococcus strain KS-1, using a model substrate, green fluorescent protein (GFP). The alpha16mer and beta16mer captured the non-native GFP and promoted its refolding without any co-chaperonin in an ATP dependent manner. A non-hydrolyzable ATP analog, AMP-PNP, induced the GFP refolding mediated by beta16mer but not by the alpha16mer. A mutant alpha-subunit chaperonin homo-oligomer (trap-alpha) could capture the non-native protein but lacked the ability to refold it. Although trap-alpha suppressed ATP-dependent refolding of GFP mediated by alpha16mer or beta16mer, it did not affect the AMP-PNP-dependent refolding. This indicated that the GFP refolding mediated by beta16mer with AMP-PNP was not accessible to the trap-alpha. Gel filtration chromatography and a protease protection experiment revealed that this refolded GFP, in the presence of AMP-PNP, was associated with beta16mer. After the completion of GFP refolding mediated by beta16mer with AMP-PNP, addition of ATP induced an additional refolding of GFP. Furthermore, the beta16mer preincubated with AMP-PNP showed the ability to capture the non-native GFP. These suggest that AMP-PNP induced one of two chaperonin rings (cis-ring) to close and induced protein refolding in this ring, and that the other ring (trans-ring) could capture the unfolded GFP which was refolded by adding ATP. The present data indicate that, in the group II chaperonin of Thermococcus strain KS-1, the protein folding proceeds in its cis-ring in an ATP-dependent fashion without any co-chaperonin.  相似文献   

18.
Proteostasis, defined as the combined processes of protein folding/biogenesis, refolding/repair, and degradation, is a delicate cellular balance that must be maintained to avoid deleterious consequences 1. External or internal factors that disrupt this balance can lead to protein aggregation, toxicity and cell death. In humans this is a major contributing factor to the symptoms associated with neurodegenerative disorders such as Huntington''s, Parkinson''s, and Alzheimer''s diseases 10. It is therefore essential that the proteins involved in maintenance of proteostasis be identified in order to develop treatments for these debilitating diseases. This article describes techniques for monitoring in vivo protein folding at near-real time resolution using the model protein firefly luciferase fused to green fluorescent protein (FFL-GFP). FFL-GFP is a unique model chimeric protein as the FFL moiety is extremely sensitive to stress-induced misfolding and aggregation, which inactivates the enzyme 12. Luciferase activity is monitored using an enzymatic assay, and the GFP moiety provides a method of visualizing soluble or aggregated FFL using automated microscopy. These coupled methods incorporate two parallel and technically independent approaches to analyze both refolding and functional reactivation of an enzyme after stress. Activity recovery can be directly correlated with kinetics of disaggregation and re-solubilization to better understand how protein quality control factors such as protein chaperones collaborate to perform these functions. In addition, gene deletions or mutations can be used to test contributions of specific proteins or protein subunits to this process. In this article we examine the contributions of the protein disaggregase Hsp104 13, known to partner with the Hsp40/70/nucleotide exchange factor (NEF) refolding system 5, to protein refolding to validate this approach.  相似文献   

19.
One of the proposed roles of the GroEL-GroES cavity is to provide an "infinite dilution" folding chamber where protein substrate can fold avoiding deleterious off-pathway aggregation. Support for this hypothesis has been strengthened by a number of studies that demonstrated a mandatory GroES requirement under nonpermissive solution conditions, i.e., the conditions where proteins cannot spontaneously fold. We have found that the refolding of glutamine synthetase (GS) does not follow this pattern. In the presence of natural osmolytes trimethylamine N-oxide (TMAO) or potassium glutamate, refolding GS monomers readily aggregate into very large inactive complexes and fail to reactivate even at low protein concentration. Surprisingly, under these "nonpermissive" folding conditions, GS can reactivate with GroEL and ATP alone and does not require the encapsulation by GroES. In contrast, the chaperonin dependent reactivation of GS under another nonpermissive condition of low Mg2+ (<2 mM MgCl2) shows an absolute requirement of GroES. High-performance liquid chromatography gel filtration analysis and irreversible misfolding kinetics show that a major species of the GS folding intermediates, generated under these "low Mg2+" conditions exist as long-lived metastable monomers that can be reactivated after a significantly delayed addition of the GroEL. Our results indicate that the GroES requirement for refolding of GS is not simply dictated by the aggregation propensity of this protein substrate. Our data also suggest that the GroEL-GroES encapsulated environment is not required under all nonpermissive folding conditions.  相似文献   

20.
The intriguing process of protein folding comprises discrete steps that stabilize the protein molecules in different conformations. The metastable state of protein is represented by specific conformational characteristics, which place the protein in a local free energy minimum state of the energy landscape. The native‐to‐metastable structural transitions are governed by transient or long‐lived thermodynamic and kinetic fluctuations of the intrinsic interactions of the protein molecules. Depiction of the structural and functional properties of metastable proteins is not only required to understand the complexity of folding patterns but also to comprehend the mechanisms of anomalous aggregation of different proteins. In this article, we review the properties of metastable proteins in context of their stability and capability of undergoing atypical aggregation in physiological conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号