首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Production of hepatitis C virus (HCV) core protein requires the cleavages of polyprotein by signal peptidase and signal peptide peptidase (SPP). Cleavage of signal peptide at the C-terminus of HCV core protein by SPP was characterized in this study. The spko mutant (mutate a.a. 189–193 from ASAYQ to PPFPF) is more efficient than the A/F mutant (mutate a.a 189 and 191 from A to F) in blocking the cleavage of signal peptide by signal peptidase. The cleavage efficiency of SPP is inversely proportional to the length of C-terminal extension of the signal peptide: the longer the extension, the less efficiency the cleavage is. Thus, reducing the length of C-terminal extension of signal peptide by signal peptidase cleavage could facilitate further cleavage by SPP. The recombinant core protein fused with signal peptide from the C-terminus of p7 protein, but not those from the C-termini of E1 and E2, could be cleaved by SPP. Therefore, the sequence of the signal peptide is important but not the sole determinant for its cleavage by SPP. Replacement of the HCV core protein E.R.-associated domain (a.a. 120–150) with the E.R.-associated domain (a.a.1–50) of SARS-CoV membrane protein results in the failure of cleavage of this recombinant protein by SPP, though this protein still is E.R.-associated. This result suggests that not only E.R.-association but also specific protein sequence is important for the HCV core protein signal peptide cleavage by SPP. Thus, our results suggest that both sequences of the signal peptide and the E.R.-associated domain are important for the signal peptide cleavage of HCV core protein by SPP. Electronic Supplementary MaterialThe online version of this article (doi: ) contains supplementary material, which is available to authorized users.  相似文献   

2.
信号肽与蛋白质的分选转运   总被引:1,自引:0,他引:1  
蛋白质一般在位于细胞质中的核糖体内合成,但是它们发挥生理功能的地点却分布在细胞的不同区域,这些区域通常由蛋白质所不能自由透过的脂膜所包裹。因此,细胞质中新合成的蛋白质必须进行准确的定向运输才能保证各项生命活动的正常运行。研究发现,一般情况下,新生蛋白通常在位于其N端的信号肽的指引下到达细胞特定区域,并由其介导跨膜转运。本文重点介绍信号肽的结构、功能及作用机制等的研究成果。  相似文献   

3.
Efficient protein secretion is very important in biotechnology as it provides active and stable enzymes, which are an essential prerequisite for successful biocatalysis. Therefore, optimizing enzyme-producing bacterial strains is a major challenge in the field of biotechnology and protein production. In this study, the Gram-positive model bacterium Bacillus subtilis was optimized for heterologous protein secretion using a novel approach. Two lipolytic enzymes, cutinase from Fusarium solani pisi and a cytoplasmatic esterase of metagenomic origin, were chosen as reporters for heterologous protein secretion. In a systematic screening approach, all naturally occurring (non-lipoprotein) Sec-type signal peptides (SPs) from B. subtilis were characterized for their potential in heterologous protein secretion. Surprisingly, optimal SPs in cutinase secretion were inefficient in esterase secretion and vice versa, indicating the importance of an optimal fit between the SP and the respective mature part of the desired secretion target proteins. These results highlight the need for individually optimal signal peptides for every heterologous secretion target. Therefore, the SP library generated in this study represents a powerful tool for secretion optimization in Gram-positive expression hosts.  相似文献   

4.
Most mitochondrial matrix space proteins are synthesized as a precursor protein, and the N-terminal extension of amino acids that served as the leader sequence is removed after import by the action of a metalloprotease called mitochondrial processing peptidase (MPP). The crystal structure of MPP has been solved very recently, and it has been shown that synthetic leader peptides bind with MPP in an extended conformation. However, it is not known how MPP recognizes hundreds of leader peptides with different primary and secondary structures or when during import the leader is removed. Here we took advantage of the fact that the structure of the leader from rat liver aldehyde dehydrogenase has been determined by 2D-NMR to possess two helical portions separated by a three amino acid (RGP) linker. When the linker was deleted, the leader formed one long continuous helix that can target a protein to the matrix space but is not removed by the action of MPP. Repeats of two and three leaders were fused to the precursor protein to determine the stage of import at which processing occurs, if MPP could function as an endo peptidase, and if it would process if the cleavage site was part of a helix. Native or linker deleted constructs were used. Import into isolated yeast mitochondria or processing with recombinantly expressed MPP was performed. It was concluded that processing did not occur as the precursor was just entering the matrix space, but most likely coincided with the folding of the protein. Further, finding that hydrolysis could not take place if the processing site was part of a stable helix is consistent with the crystal structure of MPP. Lastly, it was found that MPP could function at sites as far as 108 residues from the N terminus of the precursor protein, but its ability to process decreases exponentially as the distance increases.  相似文献   

5.
The production of recombinant proteins in the microbial host Escherichia coli often results in the formation of cytoplasmic protein inclusion bodies (IBs). Proteins forming IBs are often branded as difficult-to-express, neglecting that IBs can be an opportunity for their production. IBs are resistant to proteolytic degradation and contain up to 90% pure recombinant protein, which does not interfere with the host metabolism. This is especially advantageous for host-toxic proteins like antimicrobial peptides (AMPs). IBs can be easily isolated by cell disruption followed by filtration and/or centrifugation, but conventional techniques for the recovery of soluble proteins from IBs are laborious. New approaches therefore simplify protein recovery by optimizing the production process conditions, and often include mild resolubilization methods that either increase the yield after refolding or avoid the necessity of refolding all together. For the AMP production, the IB-based approach is ideal, because these peptides often have simple structures and are easy to refold. The intentional IB production of almost every protein can be achieved by fusing recombinant proteins to pull-down tags. This review discusses the techniques available for IB-based protein production before considering technical approaches for the isolation of IBs from E. coli lysates followed by efficient protein resolubilization which ideally omits further refolding. The techniques are evaluated in terms of their suitability for the process-scale production and downstream processing of recombinant proteins and are discussed for AMP production as an example.  相似文献   

6.
Hepatitis C virus (HCV) core protein is responsible for the formation of infectious viral particles and induction of pathogenicity. The C‐terminal transmembrane region of the immature core protein is cleaved by signal peptide peptidase (SPP) for maturation of the core protein. SPP belongs to the family of presenilin‐like aspartic proteases. Some presenilin inhibitors are expected to suppress HCV infection and production; however, this anti‐HCV effect has not been investigated in detail. In this study, presenilin inhibitors were screened to identify anti‐HCV compounds. Of the 13 presenilin inhibitors tested, LY411575 was the most potent inhibitor of SPP‐dependent cleavage of HCV core protein. Production of intracellular core protein and supernatant infectious viral particles from HCV‐infected cells was significantly impaired by LY411575 in a dose‐dependent manner (half maximum inhibitory concentration = 0.27 μM, cytotoxic concentration of the extracts to cause death to 50% of viable cells > 10 μM). No effect of LY411575 on intracellular HCV RNA in the subgenomic replicon cells was detected. LY411575 synergistically promoted daclatasvir‐dependent inhibition of viral production, but not that of viral replication. Furthermore, LY411575 inhibited HCV‐related production of reactive oxygen species and expression of NADPH oxidases and vascular endothelial growth factor. Taken together, our data suggest that LY411575 suppresses HCV propagation through SPP inhibition and impairs host gene expressions related to HCV pathogenicity.  相似文献   

7.
Signal peptides are selectively recognized and degraded by membrane associated proteases called as signal peptide peptidases. The hydrolysis of the signal peptide occurs only after its cleavage from the precursor. The possible reasons for this selectivity have been investigated. The results indicate that in signal peptides, leucine residues are clustered to a large extent on the same side of the membrane spanning alpha helix as the polar residues, but are distinctly separated along the length of the axis. Such topological differences in the distribution of amino acids on the surface of the membrane spanning alpha helix may play a crucial role in selective degradation of signal peptides.  相似文献   

8.
Current models for the action of the twin-arginine translocation (Tat) system propose that substrates bind initially to the TatBC subunits, after which a separate TatA complex is recruited to form an active translocon. Here, we have studied the roles of individual subunits in the assembly and stability of the core TatBC-containing substrate-binding complex. Previous studies have shown that TatB and TatC are active when fused together; we show here that deletion of the entire TatB transmembrane span from this Tat(BC) fusion inactivates the Tat system but does not affect assembly of the core complex. In this mutated complex, TatA is present but more loosely bound, indicating a role for TatB in the correct binding of TatA. In the absence of TatA, the truncated TatBC fusion protein still assembles into a complex of the correct magnitude, demonstrating that the transmembrane spans of TatC are the only determinants within the membrane bilayer that specify assembly of this complex. Further studies on both the Tat(BC) construct and the wild-type TatBC subunits show that the TatBC complex is unstable in the absence of TatA, and we show that TatA stabilises the TatB subunit specifically within this complex. The results demonstrate a dual role and location for TatA: in the functioning/maintenance of the core complex, and as a separate homo-oligomeric complex.  相似文献   

9.
The discovery that proteins exported from the cytoplasm are typically synthesized as larger precursors with cleavable signal peptides has focused interest on the peptidases that remove the signal peptides. Here, we review the membrane-bound peptidases dedicated to the processing of protein precursors that are found in the plasma membrane of prokaryotes and the endoplasmic reticulum, the mitochondrial inner membrane, and the chloroplast thylakoidal membrane of eukaryotes. These peptidases are termed type I signal (or leader) peptidases. They share the unusual feature of being resistant to the general inhibitors of the four well-characterized peptidase classes. The eukaryotic and prokaryotic signal peptidases appear to belong to a single peptidase family. This review emphasizes the evolutionary concepts, current knowledge of the catalytic mechanism, and substrate specificity requirements of the signal peptidases.  相似文献   

10.
The Tat system transports folded proteins across bacterial plasma and plant thylakoid membranes. To date, three key Tat subunits have been identified and mechanistic studies indicate the presence of two types of complex: a TatBC-containing substrate-binding unit and a separate TatA complex. Here, we used blue-native gel electrophoresis and affinity purification to study the nature of these complexes in Escherichia coli. Analysis of solubilized membrane shows that the bulk of TatB and essentially all of the TatC is found in a single 370kDa TatABC complex. TatABC was purified to homogeneity using an affinity tag on TatC and this complex runs apparently as an identical band. We conclude that this is the primary core complex, predicted to contain six or seven copies of TatBC together with a similar number of TatA subunits. However, the data indicate the presence of an additional form of Tat complex containing TatA and TatB, but not TatC; we speculate that this may be an assembly or disassembly intermediate of the translocator. The vast majority of TatA is found in separate complexes that migrate in blue-native gels as a striking ladder of bands with sizes ranging from under 100 kDa to over 500 kDa. Further analysis shows that the bands differ by an average of 34 kDa, indicating that TatA complexes are built largely, but possibly not exclusively, from modules of three or four TatA molecules. The range and nature of these complexes are similar in a TatC mutant that is totally inactive, indicating that the ladder of bands does not stem from ongoing translocation activity, and we show that purified TatA can self-assemble in vitro to form similar complexes. This spectrum of TatA complexes may provide the flexibility required to generate a translocon capable of transporting substrates of varying sizes across the plasma membrane in a folded state.  相似文献   

11.
Cleavage sites in nuclear-encoded mitochondrial protein targeting peptides (mTPs) from mammals, yeast, and plants have been analysed for characteristic physicochemical features using statistical methods, perceptrons, multilayer neural networks, and self-organizing feature maps. Three different sequence motifs were found, revealing loosely defined arginine motifs with Arg in positions −10, −3, and −2. A self-organizing feature map was able to cluster these three types of endopeptidase target sites but did not identify any species-specific characteristics in mTPs. Neural networks were used to define local sequence features around precursor cleavage sites. Proteins 30:49–60, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
Signal peptidase I (SPase I) is critical for the release of translocated preproteins from the membrane as they are transported from a cytoplasmic site of synthesis to extracytoplasmic locations. These proteins are synthesized with an amino-terminal extension, the signal sequence, which directs the preprotein to the Sec- or Tat-translocation pathway. Recent evidence indicates that the SPase I cleaves preproteins as they emerge from either pathway, though the steps involved are unclear. Now that the structure of many translocation pathway components has been elucidated, it is critical to determine how these components work in concert to support protein translocation and cleavage. Molecular modeling and NMR studies have provided insight on how the preprotein docks on SPase I in preparation for cleavage. This is a key area for future work since SPase I enzymes in a variety of species have now been identified and the inhibition of these enzymes by antibiotics is being pursued. The eubacterial SPase I is essential for cell viability and belongs to a unique group of serine endoproteases which utilize a Ser-Lys catalytic dyad instead of the prototypical Ser-His-Asp triad used by eukaryotes. As such, SPase I is a desirable antimicrobial target. Advances in our understanding of how the preprotein interfaces with SPase I during the final stages of translocation will facilitate future development of inhibitors that display a high efficacy against SPase I function.  相似文献   

13.
Plant Molecular Biology - Mitochondrial biogenesis requires a coordinated expression of both the nuclear and the organellar genomes and specific intracellular protein trafficking, processing and...  相似文献   

14.
A method is described for the production of recombinant isotopically enriched peptides in E. coli. Peptides are produced in high yield as fusion proteins with ketosteroid isomerase which form insoluble inclusion bodies. This insoluble form allows easy purification, stabilizes the peptide against degradation and prevents bactericidal activity of the peptide. Cyanogen bromide cleavage released peptide which was conjugated with alkylamines to form lipopeptide. An important advantage of this system is that it allows production of peptides that are toxic to bacteria, which we have demonstrated on a dodecapeptide based on residues 21–31 of human bactericidal protein lactoferrin.  相似文献   

15.
用AcMNPV的gp67信号肽与慈菇蛋白酶抑制剂基因(API2)融合,并整合到昆虫病毒表达载体BmBacPAK6中,受多角体蛋白基因启动子控制。慈菇蛋白酶抑制剂在蚕体内成功地得到了高效表达。比较了gp67信号肽和慈菇蛋白酶抑制剂信号肽在昆虫表达系统中对表达产物的影响,发现表达产物都能分泌到血淋巴中,表达量很相似,但这两种信号肽在表达过程中都没有被切除,且不同信号肽对表达产物的生物活性有很大影响。  相似文献   

16.
We report the biotechnical production of peptides of approximately 35–50 amino acids in length containing one intramolecular disulfide bridge, using a recombinant fusion tail approach. This method fills the technological gap when either (a) chemical synthesis fails due to known problematic peptide sequences or (b) if simple recombinant expression is unsuccessful due to degradation. The fusion tail described here serves several purposes: (i) it enables high expression levels inEscherichia colito be achieved; (ii) it renders the fusion protein fairly soluble; (iii) it contains a histidine affinity tag for easy purification on Ni-chelate resins, which also serves as a catalyst for the oxygen-dependent formation of the disulfide bridge; and (iv) it suppresses the formation of concatamers during the oxidation process through steric hindrance. The purified fusion protein is then immobilized on a reversed phase column for two purposes: (i) chemical cleavage of the fusion tail by cyanogen bromide and (ii) subsequent purification of the peptide. A very hydrophilic fusion partner is required so that immobilization on the reversed phase column always occurs due to the peptide. Sensitive hydrophobic residues are thereby protected from the cleavage reagent while the cleaved hydrophilic fusion tail is easily separated from the hydrophobic peptide. The method is exemplified by eight peptides representing an immunodominant epitope of the human immunodeficiency virus, but may be useful for a significant variety of similar peptides.  相似文献   

17.
In the current study, three native signal peptides (SPs) from PhoC, PhoD, and ZMO0331were investigated and compared to construct novel secretion expression systems in Zymomonas mobilis. The secretion expression of target protein, α-amylase from Bacillus amyloliquefaciens (BAA), guided by PhoD’s SP resulted in more hydrolysis of starch than that by the other two SPs. Extracellular and intracellular α-amylase activities of the strain containing PhoD’s SP were also higher than the other two strains containing PhoC or ZMO0331’s SP. In addition, the evidence by alcohol dehydrogenase activity assay further confirmed that the starch hydrolysis was resulted from the secretion expression of BAA rather than the breakage of cells. Our results indicated that the SP of PhoD is able to serve as a promising candidate to assist secretion expression of heterogeneous genes in Z. mobilis. This will contribute to development of engineered Z. mobilis strains converting starch into ethanol.  相似文献   

18.
生长激素信号肽可诱导重组蛋白外分泌表达   总被引:2,自引:0,他引:2  
重组蛋白质的表达是生物医药开发、基因功能和作用机理研究中关键技术环节.虽然细菌表达体系由于表达量大、经济等而被广泛采用,但由于其不能提供许多蛋白质必需的翻译后修饰如糖基化等,所表达的蛋白又多以不可溶包涵体形式存在,变性复性过程复杂,产率低,因此真核细胞表达体系如CHO、COS等成为活性要求高的蛋白质表达的首选[1].  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号