首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Archaeal and eukaryotic tRNA (N(2),N(2)-guanine)-dimethyltransferase (Trm1) produces N(2),N(2)-dimethylguanine at position 26 in tRNA. In contrast, Trm1 from Aquifex aeolicus, a hyper-thermophilic eubacterium, modifies G27 as well as G26. Here, a gel mobility shift assay revealed that the T-arm in tRNA is the binding site of A. aeolicus Trm1. To address the multisite specificity, we performed an x-ray crystal structure study. The overall structure of A. aeolicus Trm1 is similar to that of archaeal Trm1, although there is a zinc-cysteine cluster in the C-terminal domain of A. aeolicus Trm1. The N-terminal domain is a typical catalytic domain of S-adenosyl-l-methionine-dependent methyltransferases. On the basis of the crystal structure and amino acid sequence alignment, we prepared 30 mutant Trm1 proteins. These mutant proteins clarified residues important for S-adenosyl-l-methionine binding and enabled us to propose a hypothetical reaction mechanism. Furthermore, the tRNA-binding site was also elucidated by methyl transfer assay and gel mobility shift assay. The electrostatic potential surface models of A. aeolicus and archaeal Trm1 proteins demonstrated that the distribution of positive charges differs between the two proteins. We constructed a tRNA-docking model, in which the T-arm structure was placed onto the large area of positive charge, which is the expected tRNA-binding site, of A. aeolicus Trm1. In this model, the target G26 base can be placed near the catalytic pocket; however, the nucleotide at position 27 gains closer access to the pocket. Thus, this docking model introduces a rational explanation of the multisite specificity of A. aeolicus Trm1.  相似文献   

3.
The accurate decoding of the genetic information by the ribosome relies on the communication between the decoding center of the ribosome, where the tRNA anticodon interacts with the codon, and the GTPase center of EF-Tu, where GTP hydrolysis takes place. In the A/T state of decoding, the tRNA undergoes a large conformational change that results in a more open, distorted tRNA structure. Here we use a real-time transient fluorescence quenching approach to monitor the timing and the extent of the tRNA distortion upon reading cognate or near-cognate codons. The tRNA is distorted upon codon recognition and remains in that conformation until the tRNA is released from EF-Tu, although the extent of distortion gradually changes upon transition from the pre- to the post-hydrolysis steps of decoding. The timing and extent of the rearrangement is similar on cognate and near-cognate codons, suggesting that the tRNA distortion alone does not provide a specific switch for the preferential activation of GTP hydrolysis on the cognate codon. Thus, although the tRNA plays an active role in signal transmission between the decoding and GTPase centers, other regulators of signaling must be involved.  相似文献   

4.
5.
6.
The mitochondrial genome of Trypanosoma brucei does not contain genes encoding tRNAs; instead this protozoan parasite must import nuclear-encoded tRNAs from the cytosol for mitochondrial translation. Previously, it has been shown that mitochondrial tRNA import requires ATP hydrolysis and a proteinaceous mitochondrial membrane component. However, little is known about the mitochondrial membrane proteins involved in tRNA binding and translocation into the mitochondrion. Here we report the purification of a mitochondrial membrane complex using tRNA affinity purification and have identified several protein components of the putative tRNA translocon by mass spectrometry. Using an in vivo tRNA import assay in combination with RNA interference, we have verified that two of these proteins, Tb11.01.4590 and Tb09.v1.0420, are involved in mitochondrial tRNA import. Using Protein C Epitope -Tobacco Etch Virus-Protein A Epitope (PTP)-tagged Tb11.01.4590, additional associated proteins were identified including Tim17 and other mitochondrial proteins necessary for mitochondrial protein import. Results presented here identify and validate two novel protein components of the putative tRNA translocon and provide additional evidence that mitochondrial tRNA and protein import have shared components in trypanosomes.  相似文献   

7.
RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.  相似文献   

8.
Variations in the genetic code are found frequently in mitochondrial decoding systems. Four non-universal genetic codes are employed in ascidian mitochondria: AUA for Met, UGA for Trp, and AGA/AGG(AGR) for Gly. To clarify the decoding mechanism for the non-universal genetic codes, we isolated and analyzed mitochondrial tRNAs for Trp, Met, and Gly from an ascidian, Halocynthia roretzi. Mass spectrometric analysis identified 5-taurinomethyluridine (τm(5)U) at the anticodon wobble positions of tRNA(Met)(AUR), tRNA(Trp)(UGR), and tRNA(Gly)(AGR), suggesting that τm(5)U plays a critical role in the accurate deciphering of all four non-universal codes by preventing the misreading of pyrimidine-ending near-cognate codons (NNY) in their respective family boxes. Acquisition of the wobble modification appears to be a prerequisite for the genetic code alteration.  相似文献   

9.
Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.  相似文献   

10.
Editing of adenosine (A) to inosine (I) at the first anticodon position in tRNA is catalyzed by adenosine deaminases acting on tRNA (ADATs). This essential reaction in bacteria and eukarya permits a single tRNA to decode multiple codons. Bacterial ADATa is a homodimer with two bound essential Zn(2+). The ADATa crystal structure revealed residues important for substrate binding and catalysis; however, such high resolution structural information is not available for eukaryotic tRNA deaminases. Despite significant sequence similarity among deaminases, we continue to uncover unexpected functional differences between Trypanosoma brucei ADAT2/3 (TbADAT2/3) and its bacterial counterpart. Previously, we demonstrated that TbADAT2/3 is unique in catalyzing two different deamination reactions. Here we show by kinetic analyses and inductively coupled plasma emission spectrometry that wild type TbADAT2/3 coordinates two Zn(2+) per heterodimer, but unlike any other tRNA deaminase, mutation of one of the key Zn(2+)-coordinating cysteines in TbADAT2 yields a functional enzyme with a single-bound zinc. These data suggest that, at least, TbADAT3 may play a role in catalysis via direct coordination of the catalytic Zn(2+). These observations raise the possibility of an unusual Zn(2+) coordination interface with important implications for the function and evolution of editing deaminases.  相似文献   

11.
The anticodon stem-loop (ASL) of transfer RNAs (tRNAs) drives decoding by interacting directly with the mRNA through codon/anticodon pairing. Chemically complex nucleoside modifications found in the ASL at positions 34 or 37 are known to be required for accurate decoding. Although over 100 distinct modifications have been structurally characterized in tRNAs, only a few are universally conserved, among them threonylcarbamoyl adenosine (t(6)A), found at position 37 in the anticodon loop of a subset of tRNA. Structural studies predict an important role for t(6)A in translational fidelity, and in vivo work supports this prediction. Although pioneering work in the 1970s identified the fundamental substrates for t(6)A biosynthesis, the enzymes responsible for its biosynthesis have remained an enigma. We report here the discovery that in bacteria four proteins (YgjD, YrdC, YjeE, and YeaZ) are both necessary and sufficient for t(6)A biosynthesis in vitro. Notably, YrdC and YgjD are members of universally conserved families that were ranked among the top 10 proteins of unknown function in need of functional characterization, while YeaZ and YjeE are specific to bacteria. This latter observation, coupled with the essentiality of all four proteins in bacteria, establishes this pathway as a compelling new target for antimicrobial development.  相似文献   

12.
Antibiotics target bacteria by interfering with essential processes such as translation, but their effects on translation in mammalian cells are less well characterized. We found that doxycycline, chloramphenicol, and Geneticin (G418) interfered with insertion of selenocysteine (Sec), which is encoded by the stop codon, UGA, into selenoproteins in murine EMT6 cells. Treatment of EMT6 cells with these antibiotics reduced enzymatic activities and Sec insertion into thioredoxin reductase 1 (TR1) and glutathione peroxidase 1 (GPx1). However, these proteins were differentially affected due to varying errors in Sec insertion at UGA. In the presence of doxycycline, chloramphenicol, or G418, the Sec-containing form of TR1 decreased, whereas the arginine-containing and truncated forms of this protein increased. We also detected antibiotic-specific misinsertion of cysteine and tryptophan. Furthermore, misinsertion of arginine in place of Sec was commonly observed in GPx1 and glutathione peroxidase 4. TR1 was the most affected and GPx1 was the least affected by these translation errors. These observations were consistent with the differential use of two Sec tRNA isoforms and their distinct roles in supporting accuracy of Sec insertion into selenoproteins. The data reveal widespread errors in inserting Sec into proteins and in dysregulation of selenoprotein expression and function upon antibiotic treatment.  相似文献   

13.
14.
The nucleotide sequence of a 7.4 kb region containing the entire plastid ribosomal RNA operon of the nongreen parasitic plant Epifagus virginiana has been determined. Analysis of the sequence indicates that all four rRNA genes are intact and almost certainly functional. In contrast, the split genes for tRNAIle and tRNAAla present in the 16S-23S rRNA spacer region have become pseudogenes, and deletion upstream of the 16S rRNA gene has removed a tRNAVal gene and most of the promoter region for the rRNA operon. The rate of nucleotide substitution in 16S and 23S rRNAs is several times higher in Epifagus than in tobacco, a related photosynthetic plant. Possible reasons for this, including relaxed translational constraints, are discussed.  相似文献   

15.
The tRNAGly/glycyl-tRNA synthetase (GlyRS) system belongs to the so-called ‘class II aminoacyl-tRNA synthetase system’ in which tRNA identity elements are assured by rather few and simple determinants mostly located in the tRNA acceptor stem. Regarding evolutionary aspects, the tRNAGly/GlyRS system is a special case. There exist two different types of GlyRS, namely an archaebacterial/human type and a eubacterial type reflecting an evolutionary divergence within this system.Here we report the crystal structure of a human tRNAGly acceptor stem microhelix at 1.2 Å resolution. The local geometric parameters of the microhelix and the water network surrounding the RNA are presented. The structure complements the previously published Escherichia coli tRNAGly aminoacyl stem structure.  相似文献   

16.
17.
RNASwift is an inexpensive, versatile method for the rapid extraction of RNA. Existing RNA extraction methods typically use hazardous chemicals including phenol, chloroform and formamide which are often difficult to completely remove from the extracted RNA. RNASwift uses sodium chloride and sodium dodecyl sulphate to lyse the cells and isolate the RNA from the abundant cellular components in conjunction with solid phase extraction or isopropanol precipitation to rapidly purify the RNA. Moreover, the purified RNA is directly compatible with downstream analysis. Using spectrophotometry in conjunction with ion pair reverse phase chromatography to analyse the extracted RNA, we show that RNASwift extracts and purifies RNA of higher quality and purity in comparison to alternative RNA extraction methods. The RNASwift method yields approximately 25 μg of RNA from only 108Escherichia coli cells. Furthermore, RNASwift is versatile; the same simple reagents can be used to rapidly extract RNA from a variety of different cells including bacterial, yeast and mammalian cells. In addition to the extraction of total RNA, the RNASwift method can also be used to extract double stranded RNA from genetically modified E. coli in higher yields compared to alternative methods.  相似文献   

18.
Membrane transport proteins transduce free energy stored in electrochemical ion gradients into a concentration gradient and are a major class of membrane proteins, many of which play important roles in human health and disease. Recently, the X-ray structure of the Escherichia coli lactose permease (LacY), an intensively studied member of a large group of related membrane transport proteins, was solved at 3.5 A. LacY is composed of N- and C-terminal domains, each with six transmembrane helices, symmetrically positioned within the molecule. The structure represents the inward-facing conformation, as evidenced by a large internal hydrophilic cavity open to the cytoplasmic side. The structure with a bound lactose homolog reveals the sugar-binding site in the cavity, and a mechanism for translocation across the membrane is proposed in which the sugar-binding site has alternating accessibility to either side of the membrane.  相似文献   

19.
We solved the X-ray structures of two Escherichia coli tRNASer acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNASer microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.  相似文献   

20.
The relationships between structure, affinity and transport activity in the choline transport system of erythrocytes have been investigated in order to (i) explore the nature of the carrier site and its surroundings, and (ii) determine the dependence of the carrier reorientation process on binding energies and steric restraints due to the substrate molecule. Affinity constants and maximum transport rates for a series of trialkyl derivatives of ethanolamine were obtained by a method that involves measuring the trans effect of unlabeled analogs upon the movement of radioactive choline. The main conclusions are as follows: (1) An analysis of transport kinetics shows that the affinity constants determined experimentally differ from the actual dissociation constants in a predictable way. The better the substrate, the higher the apparent affinity relative to the true value, whereas the affinity of non-transported inhibitors is underestimated by a constant factor. (2) The carrier-choline complex undergoes far more rapid reorientation (translocation) than the free carrier. (3) The carrier imposes a strict upper limit upon the size of a substrate molecule that can participate in the carrier reorientation process; this limit corresponds to the choline structure. A smaller substrate such as tetramethylammonium, despite relatively weak binding forces, is unhindered in its translocation, suggesting that a carrier conformational change, dependent upon substrate binding energy, is not required for transport. (4) Small increases in the size of the quaternary ammonium head, as in triethylcholine, sharply lower affinity, consistent with a high degree of specificity for the trimethylammonium group. (5) Lengthening the alkyl substituent in derivatives of dimethyl- and diethylaminoethanol causes a regular increase in affinity, suggestive of unspecific hydrophobic bonding in a region very near the substrate site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号