首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Niche construction in the light of niche theory   总被引:1,自引:0,他引:1  
Ecological niche construction, the process whereby an organism improves its environment to enhance its growth and persistence, is an important missing element of niche theory. Niche theory has mainly focused on niche-deteriorating processes, such as resource consumption, predation and competition, which have negative effects on population growth. Here, we integrate niche construction explicitly into modern niche theory. We use a graphical approach to analyse how a species' niche-improving impacts interplay with niche-deteriorating impacts to modify its response to the environment. In a model of two consumers that compete for one limiting resource and one predator, we show how niche construction modifies the traditional niche-deteriorating impacts of its agent or of competing species, and hence the potential for species coexistence. By altering the balance between intraspecific and interspecific competitive effects, niche construction can either generate net interspecific facilitation or strengthen interspecific competition. The adaptive benefit derived from niche construction also strongly affects the realized niche of a niche-constructing species.  相似文献   

4.
5.
生态位概念演变与展望   总被引:118,自引:6,他引:118  
生态位概念演变与展望张光明谢寿昌(中国科学院西双版纳热带植物园,昆明650223)DevelopementofNicheConceptandItsPerspectives:AReview.ZhangGuangming,XieShouchang(Xis...  相似文献   

6.
1. Differences among communities in taxonomic composition – beta diversity – are frequently expected to result from taxon‐specific responses to spatial variation in ecological conditions, through niche partitioning. Such process‐derived patterns are in sharp contrast to arguments from neutral theory, where taxa are ecologically equivalent and beta diversity results primarily from dispersal limitation. 2. Here, we compared beta diversity among assemblages of damselflies (Odonata: Zygoptera), for which previous experiments have shown that niche differences maintain genera within a community, but patterns of relative abundance for species within each genus are shaped primarily by neutral dynamics. 3. Using null‐model and ordination‐based methods, we find that both genera and (in contrast to neutral theory) species assemblage composition vary across the landscape in a deterministic fashion, shaped by environmental and spatial factors. 4. While the observed patterns in species composition conflict with theory, we suggest that this a result of weak ecological filters acting to produce spatial variation in assemblages of ecologically similar species undergoing ecological drift within communities. Such patterns are especially likely in systems of relatively weak dispersers like damselflies.  相似文献   

7.
一直以来,生态学家和进化生物学家对森林群落物种多样格局及其形成机制持有不同的观点。虽然Robert Ricklefs将进化和生态过程整合的观点已经被群落生态学家广泛接受,但是区域物种进化历史以及局域群落微进化过程是否能够影响群落生态学过程以及这些过程如何影响群落结构和动态还有待商榷。经典的生态位理论同时强调了种间和种内生态位分化对群落多样性维持的影响。但是生态学家普遍认为种间差异足以代表群落内个体间的相互作用关系,并且由于进化过程导致的种内分化往往涉及较长的时间尺度,因此,虽然种内差异是自然选择的重要材料,物种对环境的适应性进化过程所导致的种内分化对群落构建的影响往往被生态学家所忽视。为此,通过回顾种间和个体生态位分化的研究历史,对两类研究分别进行简要阐述,强调在今后的群落生态学研究中需要考虑个体分化对局域群落构建的影响。  相似文献   

8.
9.
The relevance of neutral versus niche‐based community assembly rules (i.e. the processes sorting species present in a larger geographical region into local communities) remains to be demonstrated in ecology and biogeography. To attempt to do this, a number of complex null models are increasingly being used that compare observed community functional diversity (FD, i.e. the extent of trait dissimilarity between coexisting species) with randomly simulated FD. However, little is known about the performance of these null models in detecting non‐neutral community assembly rules such as trait convergence and divergence of communities (supposedly revealing habitat selection and limiting similarity, respectively). Here, using both simulated and field communities, I show that assembly rule detection varies systematically with the magnitude of the observed FD, so that these null models do not really succeed in breaking down the observed functional relationships between species. This is a particular concern, making detection of community assembly dependent on: (1) the pool of samples considered, and (2) the capacity of observed FD to correctly discriminate these rules. Null models should be more thoroughly described and validated before being considered as a magic wand to reveal assembly patterns.  相似文献   

10.
Comments are presented on an article published in October 2020 in Ecology and Evolution (“Predictive ability of a process‐based versus a correlative species distribution model”) by Higgins et al. This analyzed natural distributions of Australian eucalypt and acacia species and assessed the adventive range of selected species outside Australia. Unfortunately, inappropriate variables were used with the MaxEnt species distribution model outside Australia, so that large climatically suitable areas in the Northern Hemisphere were not identified. Examples from a previous analysis and from the use of the freely available spatial portal of the Atlas of Living Australia are provided to illustrate how the problem can be overcome. The comparison of methods described in the Higgins et al. paper is worthwhile, and it is hoped that the authors will be able to repeat their analyses using appropriate variables with the correlative model.  相似文献   

11.
The way species affect one another in ecological communities often depends on the order of species arrival. The magnitude of such historical contingency, known as priority effects, varies across species and environments, but this variation has proven difficult to predict, presenting a major challenge in understanding species interactions and consequences for community structure and function. Here, we argue that improved predictions can be achieved by decomposing species' niches into three components: overlap, impact and requirement. Based on classic theories of community assembly, three hypotheses that emphasise related, but distinct influences of the niche components are proposed: priority effects are stronger among species with higher resource use overlap; species that impact the environment to a greater extent exert stronger priority effects; and species whose growth rate is more sensitive to changes in the environment experience stronger priority effects. Using nectar‐inhabiting microorganisms as a model system, we present evidence that these hypotheses complement the conventional hypothesis that focuses on the role of environmental harshness, and show that niches can be twice as predictive when separated into components. Taken together, our hypotheses provide a basis for developing a general framework within which the magnitude of historical contingency in species interactions can be predicted.  相似文献   

12.
The diversity of life is ultimately generated by evolution, and much attention has focused on the rapid evolution of ecological traits. Yet, the tendency for many ecological traits to instead remain similar over time [niche conservatism (NC)] has many consequences for the fundamental patterns and processes studied in ecology and conservation biology. Here, we describe the mounting evidence for the importance of NC to major topics in ecology (e.g. species richness, ecosystem function) and conservation (e.g. climate change, invasive species). We also review other areas where it may be important but has generally been overlooked, in both ecology (e.g. food webs, disease ecology, mutualistic interactions) and conservation (e.g. habitat modification). We summarize methods for testing for NC, and suggest that a commonly used and advocated method (involving a test for phylogenetic signal) is potentially problematic, and describe alternative approaches. We suggest that considering NC: (1) focuses attention on the within‐species processes that cause traits to be conserved over time, (2) emphasizes connections between questions and research areas that are not obviously related (e.g. invasives, global warming, tropical richness), and (3) suggests new areas for research (e.g. why are some clades largely nocturnal? why do related species share diseases?).  相似文献   

13.
14.
一生态位的研究是理论生态学的一个重要领域。Grinell(1917)将生态位定义为物种在环境中的最后分布单位,强调生态位的空间概念(space niche);Elton(1927)特别强调物种与其他种的营养关系(trophic relationship),并把生态位定义为物种在生物群落中的  相似文献   

15.
Climatic niche conservatism, the tendency of species‐climate associations to remain unchanged across space and time, is pivotal for forecasting the spread of invasive species and biodiversity changes. Indeed, it represents one of the key assumptions underlying species distribution models (SDMs), the main tool currently available for predicting range shifts of species. However, to date, no comprehensive assessment of niche conservatism is available for the marine realm. We use the invasion by Indo‐Pacific tropical fishes into the Mediterranean Sea, the world's most invaded marine basin, to examine the conservatism of the climatic niche. We show that tropical invaders may spread far beyond their native niches and that SDMs do not predict their new distributions better than null models. Our results suggest that SDMs may underestimate the potential spread of invasive species and call for prudence in employing these models in order to forecast species invasion and their response to environmental change.  相似文献   

16.
17.
18.
19.
Guaiacum sanctum and Guaiacum coulteri are long‐lived Mesoamerican timber tree species heavily exploited throughout their range and considered to be at risk of extinction. Both species are included on the IUCN Red List and on CITES Appendix II, but there has been no formal assessment of the conservation status of either species. We used ecological niche modeling and rapid assessments of local density and population size structure to provide such evaluations. For the year 2000, we estimated geographic range sizes for G. sanctum and G. coulteri of 95,422 and 130,973 km2, respectively. The main core remaining habitat for G. sanctum occurs in Campeche State (Yucatan Peninsula), where populations exhibit high adult abundance and profuse regeneration. Several areas along the Mexican Pacific coast remain with suitable habitat for G. coulteri. Guaiacum coulteri is at greater risk as only 1.3 percent of its current habitat is protected, which contrasts with the 13.2 percent of current habitat protected for G. sanctum. We projected that available habitat for G. sanctum and G. coulteri will decline by a further 30–50 percent by 2020 if estimated habitat loss rates continue. We suggest that under the IUCN criteria, the conservation status of G. sanctum and G. coulteri should be updated to near threatened and vulnerable, respectively. Additionally, we conclude that the amount of protected habitat needs to be increased to safeguard both species. Our study provides a quantitative basis for updating the conservation status of both species and illustrates an assessment framework that could be applied to other threatened tree species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号