首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In Saccharomyces cerevisiae, at least three proteins (IF(1), STF(1), and STF(2)) appear to be involved in the regulation of ATP synthase. Both IF(1) and STF(1) inhibit F(1), whereas the proposed function for STF(2) is to facilitate the binding of IF(1) and STF(1) to F(1). The oligomerization properties of yeast IF(1) and STF(1) have been investigated by sedimentation equilibrium analytical ultracentrifugation and by covalent cross-linking. Both techniques confirm that IF(1) and STF(1) oligomerize in opposite directions in relation to pH, suggesting that both proteins might regulate yeast F(1)F(0)-ATPase under different conditions. Their effects on bovine F-ATPases are also described. Whereas bovine IF(1) inhibits yeast F(1)-ATPase even better than yeast IF(1) or STF(1), the capability of yeast IF(1) to inhibit the bovine enzyme is very low and decreases with time. Such an effect is also observed in the study of the homologous inhibition of yeast F(1)-ATPase. Yeast inhibitors are not as effective as their bovine counterpart, and the complex seems to dissociate gradually.  相似文献   

3.
The mitochondrial adenine nucleotide carrier, or Ancp, plays a key role in the maintenance of the energetic fluxes in eukaryotic cells. Human disorders have been found associated to unusual human ANC gene (HANC) expression but also to direct inactivation of the protein, either by autoantibody binding or by mutation. However, the individual biochemical properties of the three HAncp isoforms have not yet been deciphered. To do so, the three HANC ORF were expressed in yeast under the control of the regulatory sequences of ScANC2. Each of the three HANC was able to restore growth on a nonfermentable carbon source of a yeast mutant strain lacking its three endogenous ANC. Their ADP/ATP exchange properties could then be measured for the first time in isolated mitochondria. HANC3 was the most efficient to restore yeast growth, and HAnc3p presented the highest V(M) (80 nmol ADP min(-1) mg protein(-1)) and K(ADP)(M)(8.4 microM). HAnc1p and HAnc2p presented similar kinetic constants (V(M) approximately 30-40 nmol ADP min(-(1) mg protein(-1) and K(ADP)(M) approximately 2.5-3.7 microM), whose values were consistent with HANC1's and HANC2's lower capacity to restore yeast growth. However, the HANC genes restored growth at a lower level than ScANC2, indicating that HAncp amount may be limiting in vivo. To optimize the HAncp production, we investigated their biogenesis into mitochondria by mutagenesis of two charged amino acids in the N-terminus of HAnc1p. Severe effects were observed with the D3A and D3K mutations that precluded yeast growth. On the contrary, the K10A mutation increased yeast growth complementation and nucleotide exchange rate as compared to the wild type. These results point to the importance of the N-terminal region of HAnc1p for its biogenesis and transport activity in yeast mitochondria.  相似文献   

4.
The interaction between phenylalanyl-tRNA synthetase from yeast and Escherichia coli and tRNAPhe (yeast), tRNASer (yeast), tRNA1Val (E. coli) has been investigated by ultracentrifugation analysis, fluorescence titrations and fast kinetic techniques. The fluorescence of the Y-base of tRNAPhe and the intrinsic fluorescence of the synthetases have been used as optical indicators. 1. Specific complexes between phenylalanyl-tRNA synthetase and tRNAPhe from yeast are formed in a two-step mechanism: a nearly diffusion-controlled recombination is followed by a fast conformational transition. Binding constants, rate constants and changes in the quantum yield of the Y-base fluorescence upon binding are given under a variety of conditions with respect to pH, added salt, concentration of Mg2+ ions and temperature. 2. Heterologous complexes between phenylalanyl-tRNA synthetase (E. coli) and tRNAPhe (yeast) are formed in a similar two-step mechanism as the specific complexes; the conformational transition, however, is slower by a factor 4-5. 3. Formation of non-specific complexes between phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) proceeds in a one-step mechanism. Phenylalanyl-tRNA synthetase (yeast) binds either two molecules of tRNAPhe (yeast) or only one molecule of tRNATyr (E. coli); tRNA1Val (E. coli) or tRNASer (yeast) are also bound in a 1:1 stoichiometry. Binding constants for complexes of phenylalanyl-tRNA synthetase (yeast) and tRNATyr (E. coli) are determined under a variety of conditions. In contrast to specific complex formation, non-specific binding is disfavoured by the presence of Mg2+ ions, and is not affected by pH and the presence of pyrophosphate. The difference in the stabilities of specific and non-specific complexes can be varied by a factor of 2--100 depending on the ionic conditions. Discrimination of cognate and non-cognate tRNA by phenylalanyl-tRNA synthetase (yeast) is discussed in terms of the binding mechanism, the topology of the binding sites, the nature of interacting forces and the relation between specificity and ionic conditions.  相似文献   

5.
6.
A M Myers  A Tzagoloff  D M Kinney  C J Lusty 《Gene》1986,45(3):299-310
We report yeast/Escherichia coli shuttle vectors suitable for fusing yeast promoter and coding sequences to the lacZ gene of E. coli. The vectors contain a region of multiple unique restriction sites including EcoRI, KpnI, SmaI, BamHI, XbaI, SalI, PstI, SphI and HindIII. The region with the unique cloning sites has been introduced in both orientations with respect to lacZ and occurs proximal to the eighth codon of the gene. All the restriction sites have been phased to three different reading frames. Two series of vectors have been constructed. The first series (YEp) has two origins of replication (ori), i.e., of the yeast 2 mu circle and of the ColE1 plasmid of E. coli, and can therefore replicate autonomously in both organisms. These shuttle vectors also have the ApR gene of E. coli and either the yeast LEU2 or URA3 genes to allow for selection of both E. coli and yeast transformants. The second series of vectors (YIp) are identical in all respects to the YEp vectors except that they lack the 2 mu ori. The YIp vectors can be used to integrate lacZ fusions into yeast chromosomal DNA. None of the vectors express beta-galactosidase (beta Gal) in yeast or E. coli in the absence of inserted yeast promoter sequences. The 5'-nontranslated sequences and parts of the coding sequences of various yeast genes have been cloned into representative lacZ fusion vectors. In-frame gene fusions can be detected by beta Gal activity when either yeast or E. coli clones are plated on media containing XGal indicator. Quantitative determinations of promoter activity were made by colorimetric assay of beta Gal activity in whole cells. Fusion of the yeast CYC1 gene to lacZ in one of the vectors allowed detection of regulated expression of this gene when cells were grown under conditions of catabolite repression or derepression.  相似文献   

7.
Ubiquinone (UQ), a component of the electron transfer system in many organisms, has been widely used for pharmaceuticals and cosmetics. In this study, we cloned and overexpressed the full-length ppt1 (MTppt1) gene, which encodes p-hydroxybenzoate:polyprenyltransferase and ERppt1 gene, which was modified to be localized on endoplasmic reticulum in fission yeast. The yeast MTppt1 and ERppt1 transgenic lines showed about 3.7 and 5.1 times increment in UQ content and the recombinant yeasts with a higher UQ level are more resistant to H(2)O(2), Cu(2+) and NaCl, and interestingly their growth was also faster than the wild type at lower temperature. For large-scale cultivation, the direct feedback control of glucose using an on-line ethanol concentration monitor for ubiquinone production of yeast ERppt1 by high-cell-density fermentation was investigated and the fermentation parameters (e.g., dissolved oxygen, pH, ethanol concentration, oxygen uptake rate, carbon dioxide evolution rate and respiration quotient) were also discussed. After 90 h cultures, the yeast dry cell weight reached 57 gl(-1) and the ubiquinone yield reached 23 mgl(-1). In addition, plasmid stability was maintained at high level throughout the fermentation.  相似文献   

8.
Respiratory deficient mutants of Saccharomyces cerevisiae previously assigned to complementation group G59 are pleiotropically deficient in respiratory chain components and in mitochondrial ATPase. This phenotype has been shown to be a consequence of mutations in a nuclear gene coding for mitochondrial leucyl-tRNA synthetase. The structural gene (MSL1) coding for the mitochondrial enzyme has been cloned by transformation of two different G59 mutants with genomic libraries of wild type yeast nuclear DNA. The cloned gene has been sequenced and shown to code for a protein of 894 residues with a molecular weight of 101,936. The amino-terminal sequence (30-40 residues) has a large percentage of basic and hydroxylated residues suggestive of a mitochondrial import signal. The cloned MSL1 gene was used to construct a strain in which 1 kb of the coding sequence was deleted and substituted with the yeast LEU2 gene. Mitochondrial extracts obtained from the mutant carrying the disrupted MSL1::LEU2 allele did not catalyze acylation of mitochondrial leucyl-tRNA even though other tRNAs were normally charged. These results confirmed the correct identification of MSL1 as the structural gene for mitochondrial leucyl-tRNA synthetase. Mutations in MSL1 affect the ability of yeast to grow on nonfermentable substrates but are not lethal indicating that the cytoplasmic leucyl-tRNA synthetase is encoded by a different gene. The primary sequence of yeast mitochondrial leucyl-tRNA synthetase has been compared to other bacterial and eukaryotic synthetases. Significant homology has been found between the yeast enzyme and the methionyl- and isoleucyl-tRNA synthetases of Escherichia coli. The most striking primary sequence homology occurs in the amino-terminal regions of the three proteins encompassing some 150 residues. Several smaller domains in the more internal regions of the polypeptide chains, however, also exhibit homology. These observations have been interpreted to indicate that the three synthetases may represent a related subset of enzymes originating from a common ancestral gene.  相似文献   

9.
A Meskauskas  D Citavicius 《Gene》1992,111(1):135-139
The cDNA copies of M2-1, the larger heat-cleavage product of M2 double-stranded (ds) RNA, have been synthesized, cloned, sequenced and expressed in yeast. This sequence, in combination with the known terminal sequence of M2-1 dsRNA, identifies a translation reading frame for a 362-amino-acid protein of 38.7 kDa, similar in size to the one of several protein species produced from M2-1 dsRNA in vitro translation. The expression of this cDNA clone in yeast confers both killer and immunity phenotypes.  相似文献   

10.
Genetic expression versus plasmidic overexpression of a functional recombinant fusion protein combining the yeast Saccharomyces cerevisiae mitochondrial ADP/ATP carrier (Anc2p) and the iso-1-cytochrome c (Cyc1p) has been investigated, with the main aim of increasing the polar surface of the carrier to improve its crystallization properties. The gene encoding the his6-tagged fusion protein was expressed in yeast under the control of the regulatory sequences of ScANC2 or under the control of the strong yeast PMA1 promoter. In both cases, the chimeric carrier, Anc2-Cyc1(His6)p, was able to restore growth on a non-fermentable carbon source of a yeast strain devoid of functional ADP/ATP carrier, demonstrating its transport activity. Nevertheless, when the expression vector was used, the level of expression of Anc2-Cyc1(His6)p was no greater than that of the chimeric carrier obtained in yeast mitochondria after homologous recombination. Optimal conditions to extract and to purify Anc2-Cyc1(His6)p were determined. A series of detergents was screened for their ability to extract and to preserve in vitro the chimeric carrier. A rapid, single step purification of Anc2-Cyc1(His6)p was developed, using n-dodecyl-beta-d-maltoside (DoDM) as the best detergent to solubilize the chimeric protein. Carboxyatractyloside- (CATR-) and nucleotide-binding sites were preserved in the purified protein. Moreover, the Cyc1p moiety of Anc2-Cyc1(His6)p-CATR complex solubilized in DoDM was still able to interact in vitro with the cytochrome c oxidase (COX), with the same affinity as yeast Cyc1p. Improved production and purification of Anc2-Cyc1(His6)p-CATR complex opens up new possibilities for the use of this protein in crystallographic approaches to the yeast ADP/ATP carrier. Furthermore, Anc2-Cyc1(His6)p may be an useful molecular tool to investigate in vivo interactions between components of the respiratory chain complexes such as COX and the proteins implicated in ATP biogenesis, such as the ATP/ADP carrier.  相似文献   

11.
The discovery and biochemical characterization of the secretory pathway Ca(2+)-ATPase, PMR1, in Saccharomyces cerevisiae, has paved the way for identification of PMR1 homologues in many species including rat, Caenorhabditis elegans, and Homo sapiens. In yeast, PMR1 has been shown to function as a high affinity Ca(2+)/Mn(2+) pump and has been localized to the Golgi compartment where it is important for protein sorting, processing, and glycosylation. However, little is known about PMR1 homologues in higher organisms. Loss of one functional allele of the human gene, hSPCA1, has been linked to Hailey-Hailey disease, characterized by skin ulceration and improper keratinocyte adhesion. We demonstrate that expression of hSPCA1 in yeast fully complements pmr1 phenotypes of hypersensitivity to Ca(2+) chelators and Mn(2+) toxicity. Similar to PMR1, epitope-tagged hSPCA1 also resides in the Golgi when expressed in yeast or in chinese hamster ovary cells. (45)Ca(2+) transport by hSPCA1 into isolated yeast Golgi vesicles shows an apparent Ca(2+) affinity of 0.26 microm, is inhibitable by Mn(2+), but is thapsigargin-insensitive. In contrast, heterologous expression of vertebrate sarcoplasmic reticulum and plasma membrane Ca(2+)-ATPases in yeast complement the Ca(2+)- but not Mn(2+)-related phenotypes of the pmr1-null strain, suggesting that high affinity Mn(2+) transport is a unique feature of the secretory pathway Ca(2+)-ATPases.  相似文献   

12.
Liu J  Tan LF  Jin LH  Luan F 《DNA and cell biology》2012,31(2):250-258
The binding properties of [Ru(bpy)(2)(H(2)IIP)](2+) (1) {bpy=2,2'-bipyridine, H(2)IIP=2-(indole-3-yl)-imidazolo[4,5-f][1,10]phenanthroline} with calf thymus DNA (CT-DNA) and yeast tRNA have been investigated comparatively by different spectroscopic and viscosity measurements. The results suggest that the affinity of complex 1 binding with yeast tRNA is stronger than that of complex 1 binding with CT-DNA, and complex 1 is a better enantioselective binder to yeast tRNA than to CT-DNA. The toxicity of complex 1 was concentration dependent, and HL-60 cells are more sensitive to complex 1 than Hep-G2 cells; complex 1 could induce Hep-G2 cell apoptosis.  相似文献   

13.
Fission yeast Csk1 is a CAK-activating kinase (CAKAK).   总被引:12,自引:3,他引:9  
Cell cycle progression is dependent on the sequential activity of cyclin-dependent kinases (CDKs). For full activity, CDKs require an activating phosphorylation of a conserved residue (corresponding to Thr160 in human CDK2) carried out by the CDK-activating kinase (CAK). Two distinct CAK kinases have been described: in budding yeast Saccharomyces cerevisiae, the Cak1/Civ1 kinase is responsible for CAK activity. In several other species including human, Xenopus, Drosophila and fission yeast Schizosaccharomyces pombe, CAK has been identified as a complex homologous to CDK7-cyclin H (Mcs6-Mcs2 in fission yeast). Here we identify the fission yeast Csk1 kinase as an in vivo activating kinase of the Mcs6-Mcs2 CAK defining Csk1 as a CAK-activating kinase (CAKAK).  相似文献   

14.
Genetic manipulation of yeast linear DNA plasmids, particularly of k1 and k2 from the non-conventional dairy yeast Kluyveromyces lactis, has been advanced by the recent establishment of DNA transformation-mediated one-step gene disruption and allele replacement techniques. These methods provide the basis for a strategy for the functional analysis of plasmid genes and DNA elements. By use of double selection regimens, these single-gene procedures have been extended to effect disruption of individual genes on plasmid k2 and transplacement of a functional copy onto plasmid k1, resulting in the production of yeast strains with an altered plasmid composition. This cytoplasmic gene shuffle system facilitates the introduction of specifically modified alleles into k1 or k2 in order to study the function, expression (from UCS promoters) and regulation of cytoplasmic linear plasmid genes. Additionally, identification, characterization and localization of plasmid gene products of interest are made possible by shuffling GFP-, epitope- or affinity purification-tagged alleles between k2 and k1. The gene shuffle approach can also be used for vector development and heterologous protein expression in order to exploit the biotechnical potential of the K. lactis k1/k2 system in yeast cell factory research.  相似文献   

15.
Production of lactic acid from date juice by fermentation has been studied using Lactobacillus casei subsp. rhamnosus as the producer organism. The optimum substrate concentration, expressed in its glucose content, was 60 g l(-1). Various nitrogen sources were compared with yeast extract in terms of their efficiency for lactic acid production. None of these nitrogen sources gave lactic acid concentrations as high as that obtained with yeast extract. As yeast extract supplementation was not economically attractive, different proportions of (NH4)2SO4 and yeast extract were used. When the elemental nitrogen ratio of(NH4)2SO4 to yeast extract was 4:1, the substrate use and efficiency of lactic acid production were the same as in date juice supplemented with 20 g l(-1) yeast extract (0:5).  相似文献   

16.
17.
18.
It has been difficult to identify the proton donor and nucleophilic assistant/base of endoplasmic reticulum alpha-(1-->2)-mannosidase I, a member of glycoside hydrolase Family 47, which cleaves the glycosidic bond between two alpha-(1-->2)-linked mannosyl residues by the inverting mechanism, trimming Man(9)GlcNAc(2) to Man(8)GlcNAc(2) isomer B. Part of the difficulty is caused by the enzyme's use of a water molecule to transmit the proton that attacks the glycosidic oxygen atom. We earlier used automated docking to conclusively determine that Glu435 in the yeast enzyme (Glu599 in the corresponding human enzyme) is the nucleophilic assistant. The commonly accepted proton donor has been Glu330 in the human enzyme (Glu132 in the yeast enzyme). However, for theoretical reasons this conclusion is untenable. Theory, automated docking of alpha-d-(3)S(1)-mannopyranosyl-(1-->2)-alpha-d-(4)C(1)-mannopyranose and water molecules associated with candidate proton donors, and estimation of dissociation constants of the latter have shown that the true proton donor is Asp463 in the human enzyme (Asp275 in the yeast enzyme).  相似文献   

19.
We have isolated two genes from Saccharomyces cerevisiae that both encode a calmodulin-dependent protein kinase (CaM kinase). The CMK1 gene has been cloned by hybridization using an oligonucleotide probe synthesized on the basis of the peptide sequence of purified yeast CaM kinase (Londesborough, J. (1989) J. Gen. Microbiol. 135, 3373-3383). The other gene, CMK2, which is homologous to CMK1, has been isolated by screening at low stringency with a CMK1 fragment as a probe. The CMK2 product expressed in bacteria shows Ca(2+)- and CaM-dependent protein kinase activity, indicating that CMK2 also encodes a CaM kinase. The CMK1 and CMK2 products expressed in bacteria were found to have different biochemical properties in terms of autoregulatory activity and preference for yeast CaM or bovine CaM for maximal activity. Antibody raised against a peptide fragment of the CMK1 protein cross-reacts with the CMK2 product. Immunoblotting with this antibody indicated that the CMK1 and CMK2 products have apparent molecular masses of 56 and 50 kDa, respectively, in yeast cells. The predicted amino acid sequences of the two CMK products exhibit highest similarity with mammalian calmodulin-dependent multifunctional protein kinase II (CaM kinase II): the similarity within the N-terminal catalytic domain is about 40%, whereas that within the rest of the sequence is 25%. These data indicate that yeast has two kinds of genes encoding CaM kinase isozymes whose structural and functional properties are closely related to those of mammalian CaM kinase II. Another gene may be substituted for function of the CMK1 and CMK2 kinase in vivo, since elimination of both kinase genes is not lethal.  相似文献   

20.
Adenine nucleotide translocator (ANT) is a mitochondrial inner membrane protein involved in the ADP/ATP exchange and is a component of the mitochondrial permeability transition pore (PTP). In mammalian apoptosis, the PTP can mediate mitochondrial outer membrane permeabilization (MOMP), which is suspected to be responsible for the release of apoptogenic factors, including cytochrome c. Although release of cytochrome c in yeast apoptosis has previously been reported, it is not known how it occurs. Herein we used yeast genetics to investigate whether depletion of proteins putatively involved in MOMP and cytochrome c release affects these processes in yeast. While deletion of POR1 (yeast voltage-dependent anion channel) enhances apoptosis triggered by acetic acid, H(2)O(2) and diamide, CPR3 (mitochondrial cyclophilin) deletion had no effect. Absence of ADP/ATP carrier (AAC) proteins, yeast orthologues of ANT, protects cells exposed to acetic acid and diamide but not to H(2)O(2). Expression of a mutated form of Aac2p (op1) exhibiting very low ADP/ATP translocase activity indicates that AAC's pro-death role does not require translocase activity. Absence of AAC proteins impairs MOMP and release of cytochrome c, which, together with other mitochondrial inner membrane proteins, is degraded. Our findings point to a crucial role of AAC in yeast apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号