首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperthermostable beta-glycosidases from the Archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) hydrolyse beta-glycosides of D-glucose or D-galactose with relaxed specificities pertaining to the nature of the leaving group and the glycosidic linkage. To determine how specificity is manifested under conditions of kinetically controlled transgalactosylation, the major transfer products formed during the hydrolysis of lactose by these enzymes have been identified, and their appearance and degradation have been determined in dependence of the degree of substrate conversion. CelB and SsbetaGly show a marked preference for making new beta(1-->3) and beta(1-->6) glycosidic bonds by intermolecular as well as intramolecular transfer reactions. The intramolecular galactosyl transfer of CelB, relative to glycosidic-bond cleavage and release of glucose, is about 2.2 times that of SsbetaGly and yields beta-D-Galp-(1-->6)-D-Glc and beta-D-Galp-(1-->3)-D-Glc in a molar ratio of approximately 1 : 2. The partitioning of galactosylated SsbetaGly between reaction with sugars [kNu (M-1. s-1)] and reaction with water [kwater (s-1)] is about twice that of CelB. It gives a mixture of linear beta-D-glycosides, chiefly trisaccharides at early reaction times, in which the prevailing new glycosidic bonds are beta(1-->6) and beta(1-->3) for the reactions catalysed by SsbetaGly and CelB, respectively. The accumulation of beta-D-Galp-(1-->6)-D-Glc at the end of lactose hydrolysis reflects a 3-10-fold specificity of both enzymes for the hydrolysis of beta(1-->3) over beta(1-->6) linked glucosides. Galactosyl transfer from SsbetaGly or CelB to D-glucose occurs with partitioning ratios, kNu/kwater, which are seven and > 170 times those for the reactions of the galactosylated enzymes with 1-propanol and 2-propanol, respectively. Therefore, the binding interactions with nucleophiles contribute chiefly to formation of new beta-glycosides during lactose conversion. Likewise, noncovalent interactions with the glucose leaving group govern the catalytic efficiencies for the hydrolysis of lactose by both enzymes. They are almost fully expressed in the rate-limiting first-order rate constant for the galactosyl transfer from the substrate to the enzyme and lead to a positive deviation by approximately 2.5 log10 units from structure-reactivity correlations based on the pKa of the leaving group.  相似文献   

2.
Hydrolysis of lactose by hyperthermophilic beta-glycosidases from the archaea Sulfolobus solfataricus (SsbetaGly) and Pyrococcus furiosus (CelB) was carried out at 70 degrees C in a continuous stirred-tank reactor (CSTR) coupled to a 10-kDa cross-flow ultrafiltration module to recycle the enzyme. Recirculation rates of > or =1 min(-1), reaction of proteins with reducing sugars, and enzyme adsorption onto the membrane are major "operational" factors of enzyme inactivation in the CSTR. They cause the half-life times of SsbetaGly and CelB to be reduced two- and eight-fold, respectively, the average value for both enzymes now being approximately 5 to 7 days. Using lactose at initial concentrations of 45 and 170 g/L, the CSTR was operated at a constant conversion level of approximately 80% for more than 2 weeks without the occurrence of microbial contamination. The productivities for the SsbetaGly-catalyzed conversion of lactose were determined at different dilution rates and initial substrate concentrations, and exceed by a factor of < or =2 those observed with CelB under otherwise identical conditions. This difference reflects the approximately eight-fold stronger product inhibition of CelB by D-glucose. While the maximum total galacto-oligosaccharide production (90-100 mM) at 170 g/L lactose in the CSTR was not different from that in the batch reactor (CelB) or was greater by approximately 25% (SsbetaGly), continuous and batchwise reactions with both enzymes differed markedly with regard to relative proportions of the individual saccharide components present at 80% substrate conversion. The CSTR yielded an up to four-fold greater ratio of disaccharides to trisaccharides concomitant with a 5- to 30-fold larger relative proportion of beta-D-Galp-(1-->3)-D-Glc in the product mixture. The results show that apart from continuous hydrolysis of lactose at 70 degrees C, a CSTR charged with SsbetaGly or CelB and operated at steady-state conditions could be a useful reaction system for the production of galacto-oligosaccharides in which composition is narrower and more easily programmable, in terms of the individual components contained, as compared to the batchwise reaction.  相似文献   

3.
Enzymatic transglycosylation of lactose into oligosaccharides was studied using wild-type beta-glucosidase (CelB) and active site mutants thereof (M424K, F426Y, M424K/F426Y) and wild-type beta-mannosidase (BmnA) of the hyperthermophilic Pyrococcus furiosus. The effects of the mutations on kinetics, enzyme activity, and substrate specificity were determined. The oligosaccharide synthesis was carried out in aqueous solution at 95 degrees C at different lactose concentrations and pH values. The results showed enhanced synthetic properties of the CelB mutant enzymes. An exchange of one phenylalanine to tyrosine (F426Y) increased the oligosaccharide yield (45%) compared with the wild-type CelB (40%). Incorporation of a positively charged group in the active site (M424K) increased the pH optimum of transglycosylation reaction of CelB. The double mutant, M424K/F426Y, showed much better transglycosylation properties at low (10-20%) lactose concentrations compared to the wild-type. At a lactose concentration of 10%, the oligosaccharide yield for the mutant was 40% compared to 18% for the wild-type. At optimal reaction conditions, a higher ratio of tetrasaccharides to trisaccharides was obtained with the double mutant (0.42, 10% lactose) compared to the wild-type (0.19, 70% lactose). At a lactose concentration as low as 10%, only trisaccharides were synthesized by CelB wild-type. The beta-mannosidase BmnA from P. furiosus showed both beta-glucosidase and beta-galactosidase activity and in the transglycosylation of lactose the maximal oligosaccharide yield of BmnA was 44%. The oligosaccharide yields obtained in this study are high compared to those reported with other transglycosylating beta-glycosidases in oligosaccharide synthesis from lactose.  相似文献   

4.
The galactosyl transfer reaction to cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->] (CTS) was examined using lactose as a donor and beta-galactosidases from Aspergillus oryzae and Bacillus circulans. The A. oryzae beta-galactosidase produced three galactosyl derivatives of CTS. The main galactosyl derivative produced by the A. oryzae enzyme was identified as 6-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-[beta-D-Galp-(1-->6)]-alpha-D-Glcp-(1-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. The B. circulans beta-galactosidase also synthesized three galactosyl-transfer products to CTS. The structure of main transgalactosylation product was 3-O-beta-D-galactopyranosyl-CTS, cyclo-[-->6)-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->6)-[beta-D-Galp-(1-->3)]-alpha-D-Glcp-(1-->3)-alpha-D-Glcp-(1-->]. These results showed that beta-galactosidase transferred galactose directly to the ring glucose residue of CTS.  相似文献   

5.
Three neutral trisaccharides, which comprise 25.1% of the neutral oligosaccharide other than lactose, were isolated from bovine colostrum, obtained 6 h after parturition, by l.c. on amino silica gel. The chemical structures were identified, by methylation analysis with direct m.s. and g.l.c.-m.s., and by structural analysis with 13C-n.m.r., as beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)-]-D-GlcNAc (3-fucosyl-N-acetyllactosamine), beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc (3'-galactosyllactose), and beta-D-Galp-(1----6)-beta-D-Galp-(1----4)-D-Glc (6'-galactosyllactose). The The first-named compound was a novel oligosaccharide from mammalian milk.  相似文献   

6.
Summary The -galactosidase from Streptococcus thermophilus formed transferase products (including up to six disaccharides and two trisaccharides) during the hydrolysis of lactose to glucose and galactose. The extent of transferase products formed was dependent on the initial lactose concentration, reaching up to 40% of the total carbohydrate at 70% w/v lactose. At high lactose concentrations (40% w/v) trisaccharide transferase products were formed initially, followed by the appearance of disaccharide transferase products. In contrast, at low lactose concentrations (7.5 w/v), only traces of the trisaccharides were detected with disaccharides being the predominant transferase products. The disaccharide products accumulated to relatively high concentrations late in the overall hydrolysis of lactose, at both high and low initial lactose concentrations, while the trisaccharides peaked much earlier and were themselves subsequently hydrolysed prior to the complete disappearance of lactose. It was possible to study the hydrolysis of galactosyl lactose by the S. thermophilus -galactosidase using a semi-pure galactosyl lactose preparation containing 5% lactose. The hydrolysis of this trisaccharide occurred via at least four disaccharide intermidiates, which appeared chromatographically identical to the disaccharide transferase products formed during lactose hydrolysis. This suggests that the enzymic formation and subsequent hydrolysis of galactosyl lactose occurs via coincident reaction pathways. The initial rate of galactose over glucose formation during galactosyl lactose hydrolysis changed from a ratio of 3:1 at low (2–3% w/v) substrate concentrations to 1.5:1 at high (>20% w/v) concentrations. This indicates a shift in the preferred initial cleavage site from the galactose-galactose bond to the galactose-glucose bond.  相似文献   

7.
Galacto-oligosaccharides (GOS) are formed from lactose in discontinuous mode of conversion using beta-galactosidase from Lactobacillus sp. (beta-gal). The discontinuous process was optimized for technical application with regard to GOS yield, enzyme preparation, reaction temperature and substrate source. It proved to be advantageous to directly apply the crude cell-free enzyme extract for the conversion, since similar GOS yields and composition were obtained as when using the pure enzyme preparation, but expensive purification could be avoided. Reaction temperature was lowered to 17 degrees C to limit microbial contamination when using technical substrates. Thereby GOS yield decreased from 30% to 28% of total sugars and enzyme demand increased 2.7-fold. Whey permeate was compared to buffered lactose solution as a substrate source. The initial reaction rate was found to be 1.8 times higher for the whey permeate substrate; however, GOS yield was slightly lower (approximately 25% of total sugar at 17 degrees C) mainly due to smaller amounts of allolactose[beta-D-Galp-(1-->6)-D-Glc] and the trisaccharide beta-D-Galp-(1-->6)-D-Lac formed.  相似文献   

8.
The transfer of a galactosyl group from an enzyme to a number of neutral primary alcohols, phenol and azide has been studied during the reactions at 80 degrees C of thermostable beta-glycosidases from Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) with 2-nitrophenyl beta-D-galactopyranoside or lactose (4-O-beta-D-galactopyranosyl D-glucopyranose) as substrates. The rate constant ratios, k(Nu)/k(water), for partitioning of the galactosylated enzyme intermediates between reaction with nucleophiles (k(Nu), M(-1) s(-1)) and water (k(water), s(-1)) have been determined from the difference in the initial velocities of the formation of 2-nitrophenol or D-glucose, and D-galactose. The results show that hydrophobic bonding interactions contribute approximately 8 kJ mol(-1) to the stabilization of the transition state for the reaction of galactosylated enzyme intermediates of Ss beta Gly and CelB with 1-butanol, compared to the transition state for the enzymatic reaction with methanol. The leaving group/nucleophile binding sites of Ss beta Gly and CelB appear about 0.8 times as hydrophobic as n-octanol. Values of k(Nu)/k(water) for reactions of galactosylated Ss beta Gly with ethanol and substituted derivatives of ethanol show no clear dependence on the pK(a) of the primary hydroxy group of these nucleophiles in the pK(a) range 12.4-16.0. The binding of phenol with the galactosylated enzyme intermediates of Ss beta Gly and CelB occurs in a form that is mainly nonproductive pertaining to beta-galactoside synthesis. Neither enzyme catalyzes galactosyl transfer to azide ion. A model is proposed for the interaction of neutral nucleophiles at an extended acceptor site of the galactosylated enzymes.  相似文献   

9.
Recombinant hyperthermostable beta-glycosidases from the archaea Sulfolobus solfataricus (Ss beta Gly) and Pyrococcus furiosus (CelB) were covalently attached onto the insoluble carriers chitosan, controlled pore glass (CPG), and Eupergit C. For each enzyme/carrier pair, the protein-binding capacity, the immobilization yield, the pH profiles for activity and stability, the activity/temperature profile, and the kinetic constants for lactose hydrolysis at 70 degrees C were determined. Eupergit C was best among the carriers in regard to retention of native-like activity and stability of Ss beta Gly and CelB over the pH range 3.0-7.5. Its protein binding capacity of approximately 0.003 (on a mass basis) was one-third times that of CPG, while immobilization yields were typically 80% in each case. Activation energies for lactose conversion by the immobilized enzymes at pH 5.5 were in the range 50-60 kJ/mol. This is compared to values of approximately 75 kJ/mol for the free enzymes. Immobilization expands the useful pH range for CelB and Ss beta Gly by approximately 1.5 pH units toward pH 3.5 and pH 4.5, respectively. A packed-bed enzyme reactor was developed for the continuous conversion of lactose in different media, including whey and milk, and operated over extended reaction times of up to 14 days. The productivities of the Eupergit C-immobilized enzyme reactor were determined at dilution rates between 1 and 12 h(-1), and using 45 and 170 g/L initial lactose. Results of kinetic modeling for the same reactor, assuming plug flow and steady state, suggest the presence of mass-transfer limitation of the reaction rate under the conditions used. Formation of galacto-oligosaccharides in the continuous packed-bed reactor and in the batch reactor using free enzyme was closely similar in regard to yield and individual saccharide components produced.  相似文献   

10.
E Yoon  R A Laine 《Glycobiology》1992,2(2):161-168
Development of tandem mass spectral methods for direct linkage determination in oligosaccharides requires sets of trisaccharides differing only in one structural parameter. In this case, we chose the position of linkage to the reducing-end hexose. These sets of compounds would also be useful for the development of high-resolution separation techniques geared to resolve linkage types. Conventional organic synthesis of such a set could take as long as 2-5 months for each member of the set. Each trisaccharide would require 10-20 steps of synthesis. Instead, we utilized low pH to induce a loose acceptor specificity for bovine milk galactosyltransferase (lactose synthase: EC 2.4.1.22) and by this method, within 2 weeks, generated four novel oligosaccharides for NMR and mass spectral studies. The disaccharides cellobiose (beta 1----4), laminaribiose (beta 1----3), gentiobiose (beta 1----6) and maltose (alpha 1----4) acted as acceptors for EC 2.4.1.22 under these conditions. The beta 1----2-linked disaccharide, sophorose, was not commercially available and is not included in this study. The alpha-linked disaccharides were also examined, but except for the alpha 1----4 disaccharide maltose, were very poor acceptors under a variety of conditions. From these four acceptors, the following four novel trisaccharides were synthesized in micromole amounts, suitable for studies of linkage position using low-energy collision-induced-dissociation tandem mass spectrometry (FAB-MS-CID-MS), and for NMR: Galp(beta 1----4)Glcp(beta 1----3)-Glc, Galp(beta 1----4)Glcp(beta 1----4)Glc, Galp(beta 1----4)Glcp(beta 1----6)-Glc and Galp(beta 1----4)Glcp(alpha 1----4)Glc.  相似文献   

11.
Lactose (1,4-0-β-d-galactopyranosyl-d-glucose) is used as a soluble carbon source for the production of cellulases and hemicellulases for—among other purposes—use in biofuel and biorefinery industries. The mechanism how lactose induces cellulase formation in T. reesei is enigmatic, however. Previous results from our laboratory raised the hypothesis that intermediates from the two galactose catabolic pathway may give rise to the accumulation of intracellular oligogalactosides that could act as inducer. Here we have therefore used high-performance anion-exchange chromatography–mass spectrometry to study the intracellular galactoglycome of T. reesei during growth on lactose, in T. reesei mutants impaired in galactose catabolism, and in strains with different cellulase productivities. Lactose, allo-lactose, and lactulose were detected in the highest amounts in all strains, and two trisaccharides (Gal-β-1,6-Gal-β-1,4-Glc/Fru and Gal-β-1,4-Gal-β-1,4-Glc/Fru) also accumulated to significant levels. Glucose and galactose, as well as four further oligosaccharides (Gal-β-1,3/1,4/1,6-Gal; Gal-β-1,2-Glc) were only detected in minor amounts. In addition, one unknown disaccharide (Hex-β-1,1-Hex) and four trisaccharides were also detected. The accumulation of the unknown hexose disaccharide was shown to correlate with cellulase formation in the improved mutant strains as well as the galactose pathway mutants, and Gal-β-1,4-Gal-β-1,4-Glc/Fru and two other unknown hexose trisaccharides correlated with cellulase production only in the pathway mutants, suggesting that these compounds could be involved in cellulase induction by lactose. The nature of these oligosaccharides, however, suggests their formation by transglycosylation rather than by glycosyltransferases. Based on our results, the obligate nature of both galactose catabolic pathways for this induction must have another biochemical basis than providing substrates for inducer formation.  相似文献   

12.
A mixture of oligosaccharides produced by beta-galactosidase using lactose as a substrate was fractionated according to degree of polymerization using gel filtration, followed by high-pH anion-exchange chromatography. The fractions obtained were analyzed using monosaccharide analysis, methylation analysis, mass spectrometry, and NMR spectroscopy. Twelve novel non-reducing oligosaccharides were characterized, namely, [beta-D-Galp-(1-->4)]n-alpha-D-Glcp- (1<-->1)-beta-D-Galp[-(4<--1)-beta-D-Galp]m, with n, m = (1, 2, 3, or 4) and beta-D-Galp-(1-->2)-alpha-D-Glcp- (1<-->1)-beta-D-Galp.  相似文献   

13.
Enzymatic transgalactosylation of lactose by means of Streptococcus thermophilus, subspecies DN-001065, led to a mixture of D-galactose (approximately 4%), D-glucose (approximately 15%), lactose (approximately 51%), minor disaccharides (6%), trisaccharides (approximately 20%) and tetrasaccharides (3%). The major trisaccharide (approximately 16%) was identified by NMR spectroscopy and chemical synthesis as being the known beta-D-galactopyranosyl-(1-->3)-beta-D-galactopyranosyl-(1-->4)-D-glucos e (3'-beta-D-galactopyranosyl-lactose). It was purified from a mixture of peracetylated oligosaccharides by column chromatography followed by deacetylation. For the first time, 3'-beta-D-galactopyranosyl-lactose has been obtained on the 1 g scale, by resorting to simple techniques and equipment. NMR spectra have been unambiguously assigned.  相似文献   

14.
Li H  Li Q  Cai MS  Li ZJ 《Carbohydrate research》2000,328(4):611-615
Based on the known anti-metastasis activities of lactosides and galactosides, a galactosyl and a lactosyl trimannoside were prepared via the conventional Koenigs-Knorr and trichloroacetimidate methods, respectively. Through typical deblocking procedures, a tetrasaccharide alpha-D-Galp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 and a pentasaccharide beta-D-Galp-(1 --> 4)-beta-D-Glcp-(1 --> 2)-alpha-D-Manp-(1 --> 2)-alpha-D-Manp-(1 --> 6)-alpha-D-ManpOCH3 were obtained.  相似文献   

15.
The mucin-like glycoproteins of Trypanosoma cruzi have novel O-linked oligosaccharides that are acceptors of sialic acid in the trans-sialidase (TcTS) reaction. The transference of sialic acid from host glycoconjugates to the mucins is involved in infection and pathogenesis. The synthesis of the pentasaccharide, beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-beta-D-Galp-(1-->6)-[beta-D-Galf-(1-->4)]-D-GlcpNAc and the corresponding alditol, previously isolated by reductive beta-elimination of the mucins, is described. The key step was the 6-O-glycosylation of a easily accessible derivative of beta-D-Galf-(1-->4)-D-GlcpNAc with a beta-D-Galp-(1-->2)-[beta-D-Galp-(1-->3)]-D-Galp donor using the trichloroacetimidate method. The beta-linkage was diastereoselectively obtained by the nitrile effect. The pentasaccharide is the major oligosaccharide in the mucins of T. cruzi, G strain and presents two terminal beta-D-Galp residues for possible sialylation by TcTS. A preparative sialylation reaction was performed with its benzyl glycoside and the sialylated product was isolated and characterized. NMR spectroscopic analysis showed that selective monosialylation occurred at the terminal (1-->3) linked galactopyranose.  相似文献   

16.
beta-D-Galp-(1----3)-D-GalNAc (1) was synthesised from lactose and GalNAc on a mmolar scale by transgalactosylation using beta-D-galactosidase from bovine testes. The large proportions of unwanted oligosaccharides in the product mixture were removed by treatment with beta-D-galactosidase from E. coli, which left 1, monosaccharides, and a small proportion of trisaccharides. Carbon-Celite chromatography then gave 1 in a yield of 21% based on the GalNAc added.  相似文献   

17.
The synthesis of glycosides by enzymatic transglycosylation is a kinetically controlled reaction performed in the context of a non-favorable thermodynamic equilibrium. An unreactive organic cosolvent which increases the selectivity of the enzyme for glycosyl transfer to the acceptor nucleophile compared with water (Ksel) could improve maximum product yield. Here we report on the effect of the ionic liquid 1,3-dimethylimidazoliummethylsulfate on hydrolase and transferase activities of the hyperthermostable beta-glycosidase CelB from the archaeon Pyrococcus furiosus. CelB retained full catalytic efficiency for lactose hydrolysis at 80 degrees C in a 50% (by vol.) solution of ionic liquid in sodium citrate buffer, pH 5.5. It was inactive but not irreversibly denatured at 70% ionic liquid. Using lactose (0.15 M) as galactosyl donor, values of Ksel for a representative series of eight acceptor alcohols were determined in kinetic assays at 80 degrees C and found to increase between 1.3-fold (D-xylose) and 3.1-fold (glycerol) in 45% ionic liquid. Enhancement of Ksel was dependent on ionic liquid concentration and higher than expected from the decrease in water activity caused by the cosolvent. Experimental molar ratios of D-glucose and D-galactose produced during enzymatic conversion of lactose (75-150 mM) in the presence of D-xylose (0.5 M) or glycerol (0.5 M) showed excellent agreement with predictions based on Ksel values and confirm a significant, yet moderate effect of 45% ionic liquid on increasing the yield of D-galactoside product, by < or = 10%.  相似文献   

18.
A novel heterodimeric β-galactosidase with a molecular mass of 105 kDa was purified from crude cell extracts of the soil isolate Lactobacillus pentosus KUB-ST10-1 using ammonium sulphate fractionation followed by hydrophobic interaction and affinity chromatography. The electrophoretically homogenous enzyme has a specific activity of 97 UoNPG/mg protein. The Km, kcat and kcat/Km values for lactose and o-nitrophenyl-β-D-galactopyranoside (oNPG) were 38 mM, 20 s-1, 530 M-1·s-1 and 1.67 mM, 540 s-1, 325 000 M-1·s-1, respectively. The temperature optimum of β-galactosidase activity was 60–65°C for a 10-min assay, which is considerably higher than the values reported for other lactobacillal β-galactosidases. Mg2+ ions enhanced both activity and stability significantly. L. pentosus β-galactosidase was used for the production of prebiotic galacto-oligosaccharides (GOS) from lactose. A maximum yield of 31% GOS of total sugars was obtained at 78% lactose conversion. The enzyme showed a strong preference for the formation of β-(1→3) and β-(1→6) linkages, and the main transgalactosylation products identified were the disaccharides β-D-Galp-(1→6)-D -Glc, β-D-Galp-(1→3)-D -Glc, β-D -Galp-(1→6)-D -Gal, β-D -Galp-(1→3)-D -Gal, and the trisaccharides β-D -Galp-(1→3)-D -Lac, β-D -Galp-(1→6)-D -Lac.  相似文献   

19.
The cell walls of Actinomadura viridis contain poly(glycosylglycerol phosphate) chains of complex structure. On the basis of NMR spectroscopy of the polymer and glycosides thereof the following structural units were found: beta-D-Galp3Me-(1-->4)[beta-D-Glcp-(1-->6)]-beta-D-Galp-(1-->1)-++ +snGro (G1); beta-D-Galp-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2); beta-D-Galp3Me-(1-->4)-beta-D-Galp-(1-->1)-snGro (G2a); beta-D-Galp-(1-->1)-snGro (G3); beta-D-Galp-(1-->1)[beta-D-Galp-(1-->2)]-snGro (G4); beta-D-Glcp-(1-->2)-snGro (G5). Glycosides G1, G2 and G3 were the predominant components of the teichoic acid: they formed the polymer chain via phosphodiester bonds involving C-3 of the glycerol residue and C-3 of the galactosyl residue which in turn glycosylates C-1 of the glycerol residue. Whether the different glycosides make up the one chain or whether there are several poly(glycosylglycerol phosphate) chains in the cell wall remains to be determined. It was suggested that the minor component G5 is located at the nonterminal end of the chains. Compound G4 which contains disubstituted glycerol residues (unusual for the teichoic acid) was also found as a minor component; this may be the glycoside of a new type of teichoic acid, or a glycoside on the terminal end of the above mentioned chains. In addition, small amounts of 1,3-poly(glycerol phosphate) chains were found in the cell wall.  相似文献   

20.
A fraction of saponins from Quillaja saponaria Molina, QH-B, was fractionated by consecutive separations on three different reverse-phase HPLC systems. Eight compounds were isolated and the structures of these were elucidated mainly by sugar analysis and NMR spectroscopy. The structures consisted of a quillaic acid substituted with two different trisaccharides at C-3, beta-D-Galp-(1-->2)-[alpha-L-Rhap-(1-->3)]-beta-D-GlcpA and beta-D-Galp-(1-->2)-[beta-D-Xylp-(1-->3)]-beta-D-GlcpA, and a tetra- or pentasaccharide at C-28, beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3)]-alpha-L-Rhap-(1--> 2)-beta-D-Fucp and beta-D-Apif-(1-->3)-beta-D-Xylp-(1-->4)-[beta-D-Glcp-(1-->3) ]-alpha-L- Rhap-(1-->2)-beta-D-Fucp. These compounds were further substituted with an acyl group either at O-3 or O-4 of the fucose residue, which is the sugar linked to C-28 of the quillaic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号