首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, substantial evidence has accumulated that the G-protein-coupled, extracellular calcium (Ca(2+)(o))-sensing receptor (CaR) is expressed in bone marrow-derived cells, including osteoblasts, stromal cells, monocytes-macrophages, and osteoclast precursor cells. Our previous studies have shown that the mouse osteoblastic MC3T3-E1 cell line also expresses the CaR and exhibits mitogenic responses when exposed to various CaR agonists. In this study, in order to understand the signaling pathway(s) mediating this response, we studied the effects of CaR agonists on the phosphorylation of p42/44 mitogen-activated protein kinase (MAPK) (Erk1/2), p38 MAPK, and c-Jun N-terminal kinase (JNK) in MC3T3-E1 cells. Raising the level of Ca(2+)(o) (4.5 mM) or addition of the polycationic CaR agonists, gadolinium (Gd(3+)) (25 microM), neomycin (300 microM) or spermine (1 mM), each stimulated phosphorylation of both p42/44 and p38 MAPKs, but not JNK, as assessed using phospho-specific antibodies to the respective MAPKs. Furthermore, phosphorylation of p42/44 and p38 MAPK were markedly inhibited by their selective and potent inhibitors, PD98059 (50 microM) and SB203580 (10 microM), respectively. Finally, the two inhibitors suppressed [(3)H]thymidine incorporation into DNA in MC3T3-E1 cells at a normal level of Ca(2+)(o) (1.8 mM) as well as when stimulated by high (4.5 mM) Ca(2+)(o), Gd(3+), or neomycin. Thus, in mouse osteoblastic MC3T3-E1 cells, both the p42/44 and p38 MAPK cascades play pivotal roles in CaR-stimulated mitogenic responses.  相似文献   

2.
We examined whether the mitogen-activated protein kinase (MAPK) pathway is involved in Shiga toxin (Stx)-induced Vero cell injury. Consonant with cell injury, Stx caused a transient extracellular signal-regulated kinase1/2 (ERK1/2) and a sustained p38 MAPK phosphorylation. p38 MAPK inhibitors (SB 203580 and PD 169316), but not an ERK1/2 kinase inhibitor (PD 98059), partially inhibited the Stx-induced cell death. BAPTA-AM, a Ca(2+) chelator, reduced both cell injury and p38 MAPK phosphorylation. Antioxidants reduced Stx1-induced p38 MAPK phosphorylation. These data indicate that Stx activates p38 MAPK through an increase in intracellular Ca(2+) and reactive oxygen species, and this signaling is involved in Stx-induced cell death.  相似文献   

3.
We have recently reported that arachidonic acid mediates beta(2)-adrenergic receptor (AR) stimulation of [Ca(2+)](i) cycling and cell contraction in embryonic chick ventricular cardiomyocytes (Pavoine, C., Magne, S., Sauvadet, A., and Pecker, F. (1999) J. Biol. Chem. 274, 628-637). In the present work, we demonstrate that beta(2)-AR agonists trigger arachidonic acid release via translocation and activation of cytosolic phospholipase A(2) (cPLA(2)) and increase caffeine-releasable Ca(2+) pools from Fura-2-loaded cells. We also show that beta(2)-AR agonists trigger a rapid and dose-dependent phosphorylation of both p38 and p42/44 MAPKs. Translocation and activation of cPLA(2), as well as Ca(2+) accumulation in sarcoplasmic reticulum stores sensitive to caffeine and amplification of [Ca(2+)](i) cycling in response to beta(2)-AR agonists, were blocked by inhibitors of the p38 or p42/44 MAPK pathway (SB203580 and PD98059, respectively), suggesting a role of both MAPK subtypes in beta(2)-AR stimulation. In contrast, beta(1)-AR stimulation of [Ca(2+)](i) cycling was rather limited by the MAPKs, clearly proving the divergence between beta(2)-AR and beta(1)-AR signaling systems. This study presents the first evidence for the coupling of beta(2)-AR to cardiac cPLA(2) and points out the key role of the MAPK pathway in the intracellular signaling elicited by positive inotropic beta(2)-AR agonists in heart.  相似文献   

4.
Listeria monocytogenes, a Gram-positive bacterium, can cause meningitis after invading the human central nervous system. The blood-cerebrospinal fluid barrier (BCSFB), located at the epithelium of the choroid plexus, is a possible entry site for L. monocytogenes into the brain, and in vitro L. monocytogenes invades human choroid plexus epithelial papilloma (HIBCPP) cells. Although host cell signal transduction subsequent to infection by L. monocytogenes has been investigated, the role of mitogen-activated protein kinases (MAPK) is not clarified yet. We show that infection with L. monocytogenes causes activation of the MAPKs Erk1/2 and p38 preferentially when bacteria are added to the physiologically more relevant basolateral side of HIBCPP cells. Deletion of the listerial virulence factors Internalin (InlA) and InlB reduces MAPK activation. Whereas inhibition of either Erk1/2 or p38 signaling significantly attenuates infection of HIBCPP cells with L. monocytogenes, simultaneous inhibition of both MAPK pathways shows an additive effect, and Erk1/2 and p38 are involved in regulation of cytokine and chemokine expression following infection. Blocking of endocytosis with the synthetic dynamin inhibitor dynasore strongly abrogates infection of HIBCPP cells with L. monocytogenes. Concurrent inhibition of MAPK signaling further reduces infection, suggesting MAPKs mediate infection with L. monocytogenes during inhibition of dynamin-mediated endocytosis.  相似文献   

5.
6.
7.
To understand the signaling mechanisms of atrial natriuretic peptide (ANP) receptor-A (NPRA), we studied the effect of the ANP/NPRA system on mitogen-activated protein kinases (MAPKs), with particular emphasis on the extracellular-regulated kinase (Erk2) and stress-activated protein kinase (p38MAPK) in cultured human vascular smooth muscle cells (HVSMC). Angiotensin II (ANG II) and platelet-derived growth factor (PDGF) stimulated the immunoreactive Erk2 and p38MAPK activities and their protein levels by 2–4 fold. The pretreatment of cells with ANP significantly inhibited the agonist-stimulated Erk2 and p38MAPK activities and protein expression by 65–75% in HVSMC transiently transfected with NPRA, as compared with only 18–22% inhibition in vector-transfected cells. The pretreatment of cells with KT5823, an inhibitor of cGMP-dependent protein kinase (PKG), reversed the inhibitory effects of ANP on MAPK activities and protein expression by 90–95%. PD98059, which inhibits Erk2 by directly inhibiting the MAPK-kinase (MEK), and SB202192, a selective antagonist of p38MAPK, blocked the Erk2 and p38MAPK activities, respectively. Interestingly, ANP stimulated the MAPK-phosphatase-3 (MKP-3) protein levels by more than 3-fold in HVSMC over-expressing NPRA, suggesting that ANP-dependent inhibition of MAPKs may also proceed by stimulating the phosphatase cascade. These present findings provide the evidence that ANP exerts inhibitory effects on agonist-stimulated MAPKs (Erk2 and p38MAPK) activities and protein levels in a 2-fold manner: by antagonizing the upstream signaling pathways and by activation of MKP-3 to counter-regulate MAPKs in a cGMP and PKG-dependent manner. Our results identify a signal transduction pathway in HVSMC that could contribute to vascular remodeling and structural changes in human hypertension.  相似文献   

8.
9.
10.
Under conditions where apoptosis is prevented, peroxides disrupt the endothelial monolayer by inducing cytoskeletal rearrangements, cell retraction and formation of arrays of membrane blebs. In human umbilical vein endothelial cells (HUVEC), the H(2)O(2)-induced membrane blebbing was found to be a transient process executed by two parallel signaling mechanisms: (i) mobilization of cytosolic [Ca(2+)](i) through a pathway requiring oxidation of reduced glutathione (GSH), and (ii) activation of p38 mitogen-activated protein kinases (MAPK) independently of GSH oxidation and Ca(2+) mobilization. In the HUVEC, membrane blebbing was thus blocked by inhibition of GSH oxidation, Ca(2+) mobilization or p38 MAPK activation. Stimulation of GSH peroxidation with ebselen potentiated the H(2)O(2)-induced oscillating Ca(2+) response and the bleb formation, but not p38 phosphorylation. Chelation of [Ca(2+)](i) abolished the blebbing process but not p38 activation. In addition, in the GSH peroxidase-resistant cell line ECV304, H(2)O(2) was unable to promote membrane blebbing or significant Ca(2+) release, while p38 became phosphorylated. However, [Ca(2+)](i) was increased and blebs were formed, when the ECV304 were treated with ebselen before H(2)O(2). Together, this leads to a model where oxidative stress, through both Ca(2+)-dependent and p38 kinase-mediated phosphorylation events, causes reassembly of the actin cytoskeleton and subsequent appearance of membrane blebs at the plasma membrane.  相似文献   

11.
We have recently shown that in PC12 cells, pituitary adenylate cyclase-activating polypeptide (PACAP) and NGF synergistically stimulate PACAP mRNA expression primarily via a mechanism involving a p38 mitogen-activated protein kinase (MAPK)-dependent pathway. Here we have analyzed p38 MAPK activation by PACAP and the mechanism underlying this action of PACAP in PC12 cells. PACAP increased phosphorylation of p38 MAPK with a bell-shaped dose-response relationship and a maximal effect was obtained at 10(-8) M. PACAP (10(-8) M)-induced p38 MAPK phosphorylation was already evident at 2.5 min, maximal at 5 min, and rapidly declined thereafter. PACAP-induced p38 MAPK phosphorylation was potently inhibited by depletion of Ca(2+) stores with thapsigargin and partially inhibited by the phospholipase C inhibitor U-73122, L-type voltage-dependent calcium channel inhibitors nifedipine and nimodipine, and the Ca(2+) chelator EGTA, whereas the protein kinase C inhibitor calphostin C, the protein kinase A inhibitor H-89, the cAMP antagonist Rp-cAMP, and the nonselective cation channel blocker SKF96365 had no effect. These results indicate that PACAP activates p38 MAPK in PC12 cells through activation of a phospholipase C, mobilization of intracellular Ca(2+) stores, and Ca(2+) influx through voltage-dependent Ca(2+) channels, but not cyclic AMP-dependent mechanisms.  相似文献   

12.
Ce(4+) (Ce(NH(4))(2)(NO(3))(6)) at 1mM induces apoptosis of suspension cultures of Taxus cuspidata cells; however, the underlying signal mechanisms are unknown. We show here that a 46-kDa ERK (extracellular signal-regulated kinase)-like MAPK appears to be down-regulated at 4h, and remains at low levels for up to 48 h. An inhibitor of superoxide anions (O(2)(-)) generation, diphenyl iodonium (DPI) successfully blocks down-regulation of ERK-like MAPK and degradation of DNA. Moreover, a 41-kDa p38-like MAPK activity remains unchanged from 0.5 to 48 h. The p38 inhibitor SB202190 effectively inhibits p38-like MAPK activity, however, SB202190 fails to modify the apoptotic rate at concentrations up to 100 microM. Three nuclease (34-kDa, 22-kDa and 20-kDa) activities are profoundly enhanced in Ce(4+)-induced T. cuspidata cells. They have an optimum pH at 6.8, and are stimulated by Ca(2+)/Mg(2+). Caspase-3 inhibitor, Ac-DEVD-CHO, does not attenuate the 34-kDa nuclease activity, but inhibits the 22-kDa and the 20-kDa nuclease activities. In addition, inhibition of O(2)(-) generation by DPI significantly reduces the three nuclease activities. In conclusion, the present study suggests that down-regulation of ERK-like MAPK, burst of O(2)(-), activation of caspase-3-like and induction of three nucleases as the key signaling events mediating apoptosis in Ce(4+)-induced cultured T. cuspidata cells.  相似文献   

13.
14.
In the breast tumor cell line MCF-7, extracellular nucleotides induce transient elevations in intracellular calcium concentration ([Ca(2+)](i)). In this study we show that stimulation with ATP or UTP sensitizes MCF-7 cells to mechanical stress leading to an additional transient Ca(2+) influx. ATP> or =ATPgamma-S> or =UTP>ADP=ADPbeta-S elevate [Ca(2+)](i), proving the presence of P2Y(2)/P2Y(4) purinergic receptor subtypes. In addition, cell stimulation with ATP, ATPgamma-S or UTP but not ADPbeta-S induced the phosphorylation of ERK1/2, p38 and JNK1/2 mitogen activated protein kinases (MAPKs). The use of Gd(3+), La(3+) or a Ca(2+)-free medium, inhibited ATP-dependent stress activated Ca(2+) (SAC) influx, but had no effect on MAPK phosphorylation. ATP-induced activation of MAPKs was diminished by two PI-PLC inhibitors and an IP(3) receptor antagonist. These results evidence an ATP-sensitive SAC influx in MCF-7 cells and indicate that phosphorylation of MAPKs by ATP is dependent on PI-PLC/IP(3)/Ca(2+)(i) release but independent of SAC influx in these cells, differently to other cell types.  相似文献   

15.
MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis   总被引:1,自引:0,他引:1  
Cadmium (Cd) may be accumulated in human body through long-term exposure to Cd-polluted environment, resulting in neurodegeneration and other diseases. To study the mechanism of Cd-induced neurodegeneration, PC12 and SH-SY5Y cells were exposed to Cd. We observed that Cd-induced apoptosis in the cells in a time- and concentration-dependent manner. Cd rapidly activated the mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase 1/2 (Erk1/2), c -Jun N-terminal kinase (JNK) and p38. Inhibition of Erk1/2 and JNK, but not p38, partially protected the cells from Cd-induced apoptosis. Consistently, over-expression of dominant negative c- Jun or down-regulation of Erk1/2, but not p38 MAPK, partially prevented Cd-induced apoptosis. To our surprise, Cd also activated mammalian target of rapamycin (mTOR)-mediated signaling pathways. Treatment with rapamycin, an mTOR inhibitor, blocked Cd-induced phosphorylation of S6K1 and eukaryotic initiation factor 4E binding protein 1, and markedly inhibited Cd-induced apoptosis. Down-regulation of mTOR by RNA interference also in part, rescued cells from Cd-induced death. These findings indicate that activation of the signaling network of MAPK and mTOR is associated with Cd-induced neuronal apoptosis. Our results strongly suggest that inhibitors of MAPK and mTOR may have a potential for prevention of Cd-induced neurodegeneration.  相似文献   

16.
Although the involvement of protease-activating receptor PAR1 and PAR4 is well established in platelet aggregation, their role in platelet adhesion and spreading has yet to be characterized. We investigated platelet adhesion and spreading on a fibrinogen matrix after PAR1 and PAR4 stimulation in correlation with the activation of two MAPKs, ERK2 and p38. Of the two PAR-activating peptides (PAR-APs), PAR1-AP and PAR4-AP, which both induce adhesion, only PAR4-AP induced full platelet spreading. Although both PAR1-AP and PAR4-AP induced ADP secretion, which is required for platelet spreading, only PAR4-AP induced sustained Ca(2+) mobilization. In these conditions of PAR4 induction, ERK2 and p38 activation were involved in platelet spreading but not in platelet adhesion. p38 phosphorylation was dependent on ADP signaling through P2Y12, its receptor. ERK2 phosphorylation was triggered through integrin alphaIIbbeta3 outside-in signaling and was dependent on the Rho pathway. ERK2 and p38 activation induced phosphorylation of the myosin light chain and actin polymerization, respectively, necessary for cytoskeleton reorganization. These findings provide the first evidence that thrombin requires PAR4 for the full spreading response. ERK2 and p38 and sustained Ca(2+) mobilization, involved in PAR4-induced platelet spreading, contribute to the stabilization of platelet thrombi at sites of high thrombin production.  相似文献   

17.
Recently fluid flow has been shown to be a potent physical stimulus in the regulation of bone cell metabolism. However, most investigators have applied steady or pulsing flow profiles rather than oscillatory fluid flow, which occurs in vivo because of mechanical loading. Here oscillatory fluid flow was demonstrated to be a potentially important physical signal for loading-induced changes in bone cell metabolism. We selected three well known biological response variables including intracellular calcium (Ca(2+)i), mitogen-activated protein kinase (MAPK) activity, and osteopontin (OPN) mRNA levels to examine the response of MC3T3-E1 osteoblastic cells to oscillatory fluid flow with shear stresses ranging from 2 to -2 Newtons/m(2) at 1 Hz, which is in the range expected to occur during routine physical activities. Our results showed that within 1 min, oscillatory flow induced cell Ca(2+)i mobilization, whereas two MAPKs (ERK and p38) were activated over a 2-h time frame. However, there was no activation of JNK. Furthermore 2 h of oscillatory fluid flow increased steady-state OPN mRNA expression levels by approximately 4-fold, 24 h after exposure to fluid flow. The presence of both ERK and p38 inhibitors and thapsigargin completely abolished the effect of oscillatory flow on steady-state OPN mRNA levels. In addition, experiments using a variety of pharmacological agents suggest that oscillatory flow induces Ca(2+)i mobilization via the L-type voltage-operated calcium channel and the inositol 1,4,5-trisphosphate pathway.  相似文献   

18.
Because matrix metalloproteinases (MMPs) play roles in inflammatory tissue injury, we asked whether MMP secretion by gastric epithelial cells may contribute to gastric injury in response to signals involved in Helicobacter pylori-induced inflammation and/or cyclooxygenase inhibition. Tumor necrosis factor (TNF)-alpha, interleukin (IL)-1beta, and epidermal growth factor (EGF) stimulated gastric cell MMP-1 secretion, indicating that MMP-1 secretion occurs in inflammatory as well as non-inflammatory situations. MMP-1 secretion required activation of the MAPK Erk and subsequent protein synthesis but was down-regulated by the alternate MAPK, p38. In contrast, secretion of MMP-13 was stimulated by TNF-alpha/IL-1beta but not EGF and was Erk-independent and mediated by p38. MMP-13 secretion was more rapid (peak, 6 h) than MMP-1 (peak > or =30 h) and only partly depended on protein synthesis, suggesting initial release of a pre-existing MMP-13 pool. Therefore, MMP-1 and MMP-13 secretion are differentially regulated by MAPKs. MMP-1 secretion was regulated by E prostaglandins (PGEs) in an Erk-dependent manner. PGEs enhanced Erk activation and MMP-1 secretion in response to EGF but inhibited Erk and MMP-1 when TNF-alpha and IL-1beta were the stimuli, indicating that the effects of PGEs on gastric cell responses are context-dependent. These data show that secretion of MMPs is differentially regulated by MAPKs and suggest mechanisms through which H. pylori infection and/or cyclooxygenase inhibition may induce epithelial cell signaling to contribute to gastric ulcerogenesis.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号