首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Analogues of lysine containing a 4,5-acetylenic linkage (lysyne) or a cis- or trans-4,5-olefinic linkage (lysenes) function as substrates for a homogeneous L-lysine epsilon-transaminase from Achromobacter liquidum but partition between transamination and time-dependent inactivation. The partition ratio is lowest for lysyne (40 per inactivation event) and higher for trans-lysene (160 per inactivation event), and the cis-lysene transaminates 1600 times per inactivation event. cis-Lysene yields alpha-picolinate as a detectable accumulating product, presumably from cyclization of initial 6-aldehyde to dihydropicolinate and spontaneous autoxidation. The trans isomer also yields some picolinate as an identifiable product. The product from the few lysyne turnovers is as yet unknown but has strong absorbance at 318 nm. The inactive enzyme species from all three lysine analogues slowly (overnight) regain full activity after gel filtration chromatography and dialysis, suggesting reversal of the initial adduct-forming reaction. Initial studies with partially purified pseudomonad lysine alpha-racemase show alpha-3H incorporation from 3H2O but no inactivation consistent with the expectation that these lysine analogues could act readily as mechanism-based inactivators for pyridoxal P enzymes which act at the epsilon- but not the alpha-carbon of lysine.  相似文献   

2.
In order to study the conformation of the side chain of lysine substrates bound to the active center of trypsin, two lysine analogs, cis- and trans-2,6-diamino-4-hexenoic acids (4,5-dehydrolysines) were synthesized and kinetic parameters for the hydrolysis of benzoyl methyl esters and phenylthiazolones of these analogs by this enzyme were compared with those of the corresponding lysine derivatives. The derivatives of cis-4,5-dehydrolysine were hydrolyzed much more slowly than those of lysine, owing largely to the small kcat values for the former. On the other hand, the derivatives of the trans-isomer were hydrolyzed at about the same rates as those of lysine and the values of both Km and kcat of the former are also similar to those of the latter. These results indicate that the conformation of the side chain of the lysine derivatives hydrolyzed by trypsin is such that the beta- and epsilon-carbons are in a trans-like conformation, as suggested by X-ray crystallographic studies of inhibitor-trypsin complex.  相似文献   

3.
Hydrolysis in vitro of alpha- and epsilon-peptide bonds of synthetic amino acids and peptide substrates,--models of protein fragments, with digestive enzymes was studied. The kinetics of hydrolysis was studied by quantitative thin-layer chromatography followed by densitometric analysis of the chromatographic patterns. The rate constants of hydrolysis of Phe-Lys, Gly-Lys dipeptides and their epsilon-acetyl and epsilon-succinyl derivatives with leucine aminopeptidase and pancreatic enzymes were calculated. epsilon-Acyl residues of the substrates failed to split off under these conditions. The digestive enzymes hydrolysed the alpha-peptide bonds adjacent to the acylated lysine. Hydrolysis of epsilon-acetyl substrates proceeded faster as compared to epsilon-succinyl derivatives.  相似文献   

4.
1. Periodate oxidation of the ribose ring was used to synthesize derivatives of nucleoside triphosphates. 2. These oxidized nucleoside triphosphates. 2. These oxidized nucleoside triphosphates are competitive inhibitors of RNA polymerase. 3. On incubation, together with NaBH4, these oxidized labelled nucleotides are covalently bound to Escherichia coli RNA polymerase. 4. Nucleoside triphosphate substrates decrease the extent of labelling. 5. A lysine residue in an alpha-subunit is labelled. 6. The significance of these results in relation to the location of the nucleotide-binding site is discussed.  相似文献   

5.
Z-Val-, Z-Pro-, Z-Leu-Leu-, and Z-Leu-Pro-lysinals and BZ-DL-lysinal were chemically synthesized and tested as novel inhibitors for Achromobacter protease I (API), a lysine-specific serine protease. Among the lysinal derivatives tested, Z-Val-lysinal was the most potent competitive inhibitor, its Ki being estimated as 6.5 nM in an esterolytic assay with Tos-Lys-OMe. In an amidolytic assay, Z-Leu-Leu-lysinal was the most potent inhibitor and the apparent mode of inhibition was non-competitive. The Kis of the other lysinal derivatives in both esterolytic and amidolytic assays were more than 10(3) times lower than that of leupeptin. Z-Val-lysinol, lacking the aldehyde group, was a poor competitive inhibitor. These results suggest that acyl-, acylaminoacyl-, and acylpeptidyllysinals function as a transition-state inhibitor for Achromobacter protease I.  相似文献   

6.
Vasoactive intestinal peptide is an amino acceptor and donor substrate for tissue transglutaminase (TGase) in vitro. This peptide contains a single glutamine residue, Gln16, which was identified as the amino acceptor substrate. Different gamma(glutamyl16)amine derivatives of vasoactive intestinal peptide were synthesized enzymatically in vitro. The modification is very fast when compared with that of many native substrates of TGase. The analogs 1,3-diaminopropane, putrescine, cadaverine, spermidine, spermine, glycine ethyl ester and mono-dansylcadaverine of the peptide were purified by high-performance liquid chromatography on a reverse-phase column and were analyzed by electrospray mass spectrometry. When amines were absent in the assay mixture as an external amino donor, lysine residue occurring in the peptide was an effective amino donor site for TGase. Only one of the three lysine residues of vasoactive intestinal peptide, namely Lys21, was demonstrated to be involved in both inter- and intramolecular cross-link formation.  相似文献   

7.
The reaction of cytochrome c with ethyl thioltrifluoroacetate was carried out under conditions which led to the selective trifluoroacetylation of a small number of the 19 lysines. The mixture of derivatives was separated by ion-exchange chromatography and four different derivatives with well-resolved 19F nuclear magnetic resonance (NMR) spectra were obtained. Peptide mapping techniques indicated that one of these derivatives contained a single trifluoroacetyl group at lysine 22, and another derivative was singly labeled at lysine 25. The trifluoroacetylated lysine 22 derivative was fully active toward both succinate-cytochrome c reductase (EC 1.3.99.1) and cytochrome oxidase (EC 1.9.3.1) white the trifluoroacetylated lysine 25 derivative was fully active toward the reductase, but had a threefold greater Michaelis constant in the cytochrome oxidase reactin. This supports the hypothesis that the cytochrome oxidase binding site is located in the heme cervice region, and that Lys-25 is important in the binding. 19FNMR spectra of the cytochrome c derivatives bound to phospholipid vesicles were obtained. The reasonably narrow line widths (35-65 Hz) and good sensitivity of the trifluoroacetyl resonances indicated that they might be useful probes for the interaction of cytochrome c with intact mitochondria.  相似文献   

8.
A chemoselective method is described for coupling chlorophyll derivatives with an aldehyde group to synthetic peptides or proteins modified with an aminoxyacetyl group at the epsilon-amino group of a lysine residue. Three template-assembled antiparallel four-helix bundles were synthesized for the ligation of one or two chlorophylls. This was achieved by coupling unprotected peptides to cysteine residues of a cyclic decapeptide by thioether formation. The amphiphilic helices were designed to form a hydrophobic pocket for the chlorophyll derivatives. Chlorophyll derivatives Zn-methyl-pheophorbide b and Zn-methyl-pyropheophorbide d were used. The aldehyde group of these chlorophyll derivatives was ligated to the modified lysine group to form an oxime bond. The peptide-chlorophyll conjugates were characterized by electrospray mass spectrometry, analytical HPLC, and UV/visible spectroscopy. Two four-helix bundle chlorophyll conjugates were further characterized by size-exclusion chromatography, circular dichroism, and resonance Raman spectroscopy.  相似文献   

9.
Cytochrome c derivatives labeled with a 3-nitrophenylazido group at lysine 13, at lysine 22, or at both residues have been prepared. The interaction of the cytochrome c derivatives with beef heart cytochrome c oxidase (ferrocytochrome c:oxygen oxidoreductase, EC 1.9.3.1) in the presence of ultrviolet light results in formation of a covalent complex between cytochrome c and the oxidase. Using the lysine 22 derivative, the polypeptide composition of the oxidase is not modified, nor is its catalytic activity, whereas with the lysine 13 derivative, the gel electrophoretic pattern is altered and the catalytic activity of the complex diminished. The data are consisten with a specfic covalent interaction of the lysine 13 derivative of cytochrome c with the polypeptide of molecular weight 23,700 (Subunit II) of cytochrome c oxidase.  相似文献   

10.
A series of 14 4-nitroanilide substrates and 17 thioester substrates have been used to measure kinetic constants with porcine pancreatic kallikrein. All of the substrates have a P1 arginine residue. The 4-nitroanilide substrates consist of seven P2-glycine and seven P2-phenylalanine tripeptides. As expected from previous results, the phenylalanine series substrates were generally 100-fold 'better' than those in the glycine series. The S3 subsite was found to 'prefer' lysine or phenylalanine, whereas glutamic acid in this position was distinctly unfavourable. The thioester substrates consisted of various thioester derivatives of arginine as well as 12 dipeptides. These substrates exhibited kcat./Km values generally 1000 times higher than the P2-phenylalanine 4-nitroanilides. With the thioesters, a P2 phenylalanine or tryptophan residue yielded the best substrates, but some of the simple derivatives of arginine were nearly as good. A comparison of the kinetic constants of the thioester substrates between the porcine enzyme and human plasma kallikrein provides further evidence that these enzymes have a similar preference for bulky P2 residues, but otherwise are quite different enzymes. The thioester substrates are nearly as reactive as oxygen ester substrates such as acetylphenylalanylarginine methyl ester for the porcine enzyme [Levison & Tomalin (1982) Biochem. J. 203, 299-302; Fiedler (1983) Adv. Exp. Med. Biol. 156A, 263-274], and owing to the greater ease in assaying with the thioesters, they should find use in routine assays for the glandular kallikreins.  相似文献   

11.
Deoxyhypusine synthase catalyzes the formation of a deoxyhypusine residue in the translation eukaryotic initiation factor 5A (eIF5A) precursor protein by transferring an aminobutyl moiety from spermidine onto a conserved lysine residue within the eIF5A polypeptide chain. This reaction commences the activation of the initiation factor in fungi and vertebrates. A mechanistically identical reaction is known in the biosynthetic pathway leading to pyrrolizidine alkaloids in plants. Deoxyhypusine synthase from tobacco was cloned and expressed in active form in Escherichia coli. It catalyzes the formation of a deoxyhypusine residue in the tobacco eIF5A substrate as shown by gas chromatography coupled with a mass spectrometer. The enzyme also accepts free putrescine as the aminobutyl acceptor, instead of lysine bound in the eIF5A polypeptide chain, yielding homospermidine. Conversely, it accepts homospermidine instead of spermidine as the aminobutyl donor, whereby the reactions with putrescine and homospermidine proceed at the same rate as those involving the authentic substrates. The conversion of deoxyhypusine synthase-catalyzed eIF5A deoxyhypusinylation pinpoints a function for spermidine in plant metabolism. Furthermore, and quite unexpectedly, the substrate spectrum of deoxyhypusine synthase hints at a biochemical basis behind the sparse and skew occurrence of both homospermidine and its pyrrolizidine derivatives across distantly related plant taxa.  相似文献   

12.
Lysine uptake and exchange in Corynebacterium glutamicum.   总被引:4,自引:3,他引:1       下载免费PDF全文
Resting cells of Corynebacterium glutamicum (ATCC 13032) accumulate [14C]lysine by a transport system with a relatively high affinity (10 microMs) and a low maximum velocity (0.15 nmol/min per mg [dry weight]). Uptake of lysine was not inhibited by uncouplers or by ionophores affecting the ion gradients and the energetic state of the cell. Analysis of intracellular amino acid concentrations during the transport reaction as well as kinetic studies revealed that the observed uptake of lysine in fact represents a homologous antiport between extracellular [14C]lysine and intracellular unlabeled lysine. Intracellular [14C]lysine could only be released by the addition of unlabeled lysine to the bacterial suspension. In contrast to this homologous antiport reaction, we observed net uptake of lysine in lysine-depleted cells of a lysine auxotrophic strain. This net uptake was found to be electrogenic and could also be observed as a heterologous antiport reaction in wild-type cells under particular conditions. In this case exchange was mediated between internal lysine and external alanine, isoleucine, or valine. This antiport was electrogenic, since the substrates differ in charge. The cells can switch between electroneutral homologous exchange and electrogenic heterologous antiport mode during fermentation because of changing metabolic conditions.  相似文献   

13.
Deubiquitinating enzymes (DUBs) catalyze the removal of attached ubiquitin molecules from amino groups of target proteins. The large family of DUBs plays an important role in the regulation of the intracellular homeostasis of different proteins and influences therefore key events such as cell division, apoptosis, etc. The DUB family members UCH-L3 and USP2 are believed to inhibit the degradation of various tumor-growth-promoting proteins by removing the trigger for degradation. Inhibitors of these enzymes should therefore lead to enhanced degradation of oncoproteins and may thus stop tumor growth. To develop an enzymatic assay for the search of UCH-L3 and USP2 inhibitors, C-terminally labeled ubiquitin substrates were enzymatically synthesized. We have used the ubiquitin-activating enzyme E1 and one of the ubiquitin-conjugating enzymes E2 to attach a fluorescent lysine derivative to the C terminus of ubiquitin. Since only the epsilon-NH(2) group of the lysine derivatives was free and reactive, the conjugates closely mimic the isopeptide bond between the ubiquitin and the lysine side chains of the targeted proteins. Various substrates were synthesized by this approach and characterized enzymatically with the two DUBs. The variant consisting of the fusion protein between the large N-terminal NusA tag and the ubiquitin which was modified with alpha-NH(2)-tetramethylrhodamin-lysine, was found to give the highest dynamic range in a fluorescence polarization readout. Therefore we have chosen this substrate for the development of a miniaturized, fluorescence-polarization-based high-throughput screening assay.  相似文献   

14.
In eukaryotes, two isozymes (I and II) of methionine aminopeptidase (MetAP) catalyze the removal of the initiator methionine if the penultimate residue has a small radius of gyration (glycine, alanine, serine, threonine, proline, valine, and cysteine). Using site-directed mutagenesis, recombinant yeast MetAP I derivatives that are able to cleave N-terminal methionine from substrates that have larger penultimate residues have been expressed. A Met to Ala change at 329 (Met206 in Escherichia coli enzyme) produces an average catalytic efficiency 1.5-fold higher than the native enzyme on normal substrates and cleaves substrates containing penultimate asparagine, glutamine, isoleucine, leucine, methionine, and phenylalanine. Interestingly, the native enzyme also has significant activity with the asparagine peptide not previously identified as a substrate. Mutation of Gln356 (Gln233 in E. coli MetAP) to alanine results in a catalytic efficiency about one-third that of native with normal substrates but which can cleave methionine from substrates with penultimate histidine, asparagine, glutamine, leucine, methionine, phenylalanine, and tryptophan. Mutation of Ser195 to alanine had no effect on substrate specificity. None of the altered enzymes produced cleaved substrates with a fully charged residue (lysine, arginine, aspartic acid, or glutamic acid) or tyrosine in the penultimate position.  相似文献   

15.
The group of aminopeptidase bands from Tineola bisselliella larvae with highest electrophoretic mobility in polyacrylamide gels were purified further and partially separated by ion exchange chromatography. Three aminopeptidase bands were present in this material and were very similar with respect to their pH optima (7-7), their molecular weight of 94,000, their responses to metal ions and enzyme inhibitors and in their substrate specificity requirements. Kinetic constants were obtained for the hydrolysis of 17 different alpha-aminoacyl-beta-naphthylamides by these aminopeptidases, the most favoured substrates being the derivatives of alanine, methionine, proline, leucine, glycine, glutamic acid, lysine and arginine. The enzymes also hydrolyse amino acid amides, dipeptides, dipeptide amides, tripeptides and oligopeptides at the N-terminal end. These enzymes differ from the other aminopeptides in T. bisselliella in being able to hydrolyse bonds involving proline.  相似文献   

16.
Ubiquitin carboxyl-terminal hydrolase (formerly known as ubiquitin carboxyl-terminal esterase), from rabbit reticulocytes, has been shown to hydrolyze thiol esters formed between the ubiquitin carboxyl terminus and small thiols (e.g. glutathione), as well as free ubiquitin adenylate (Rose, I. A., and Warms, J. V. B. (1983) Biochemistry 22, 4234-4237). We now show that this enzyme hydrolyzes amide derivatives of the ubiquitin carboxyl terminus, including those of lysine (epsilon-amino), glycine methyl ester, and spermidine. It also hydrolyzes ubiquitin COOH-terminal hydroxamic acid, but is inactivated under the conditions for assaying ubiquitin-hydroxylamine adduct hydrolysis. Amide adducts formed between ubiquitin and epsilon-amino groups of protein lysine residues are much poorer substrates than is the ubiquitin amide of the epsilon-amino group of free lysine. The enzyme is thus a general hydrolase that recognizes the ubiquitin moiety, but is highly selective for small ubiquitin derivatives. It probably functions to regenerate ubiquitin from adventitiously formed ubiquitin amides and thiol esters. It also has the correct specificity to function in regenerating ubiquitin from small ubiquitin peptides that are probable end products of ubiquitin-dependent proteolysis. A simple, large-scale preparation of the enzyme from human erythrocytes is described.  相似文献   

17.
In vitro protein kinase C phosphorylation sites of placental lipocortin   总被引:4,自引:0,他引:4  
Human placental lipocortin is a high-affinity substrate for rat brain protein kinase C in vitro with phosphorylation occurring on serine and threonine residues in a ratio of approximately 2 to 1. Comparison of the ability of various N-terminal-truncated derivatives of lipocortin to serve as phosphorylation substrates, and direct analysis of the N-terminal peptides cleaved from 32P-labeled lipocortin, indicated that threonine-24, serine-27, and serine-28 were the phosphorylation sites. The possibility is discussed that a lysine residue near the carboxy side of the phosphorylation site was involved in lipocortin interaction with the catalytic site of protein kinase C.  相似文献   

18.
The preparation, purification and characterization of the three singly, three doubly and one triply substituted derivatives of cytochrome c modified by pyridoxal phosphate (PLP) at lysine residues are reported. The PLP positions in PLP derivatives were determined by the amino acid analysis and sequence of PLP peptides. The results identified the lysine at position 86 in one of the singly substituted, lysine 79 in the other singly substituted and lysines 86 and 79 in the third doubly substituted cytochrome c derivatives. The area surrounding phenylalanine 82 forms the predominant PLP binding site on the cytochrome c molecule. The visible, CD and proton NMR spectra, the full intensity of the conformation-sensitive 695 nm band and the oxidation-reduction properties provide evidence to confirm the conclusion that singly and doubly substituted PLP cytochromes c retain the native conformation. The ability to restore both succinate and ascorbate/TMPD oxidation in cytochrome c-depleted mitochondria decreases in the order: native cytochrome c greater than PLP-Lys-79-cytochrome c greater than PLP-Lys-86-cytochrome c greater than PLP-Lys-79,86-cytochrome c greater than triply substituted derivative.  相似文献   

19.
The preceding paper in this journal has reported that pyruvate could be substituted for 2-oxo-glutarate as a substrate of saccharopine dehydrogenase [epsilon-N-(L-glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine-forming) in the direction of reductive condensation. In the present communication, the kinetic mechanism of saccharopine dehydrogenase reaction with NADH, L-lysine and pyruvate as reactants is reported. The results of initial velocity study, inhibition studies with lysine analogs and a reaction product, NAD+, are consistent with an ordered mechanism with the coenzyme binding first and pyruvate last. The reaction mechanism is at variance with that of the normal reaction in which 2-oxoglutarate is the substrate, in that the order of addition of the amino and oxo acid substrates is reversed. This fact suggests that there exists a small degree of randomness in the binding of amino and oxo acid substrates. From a product inhibition study, NAD+ was shown to be the last reactant released. Saccharopine [epsilon-N-(L-glutaryl-2)-L-lysine] was found to act as a potent dead-end inhibitor of the condensation reactions (of lysine and 2-oxoglutarate, and of lysine and pyruvate) by forming an abortive E. NADH. saccharopine complex.  相似文献   

20.
Z-Val-, Z-Pro-, Z-Leu-Leu-, and Z-Leu-Pro-lysinals and BZ-DL-lysinal were chemically synthesized and tested as novel inhibitors for Achromobacter protease I (API), a lysine-specific serine protease. Among the lysinal derivatives tested, Z-Val-lysinal was the most potent competitive inhibitor, its Ki being estimated as 6.5 nM in an esterolytic assay with Tos-Lys-OMe. In an amidolytic assay, Z-Leu-Leu-lysinal was the most potent inhibitor and the apparent mode of inhibition was non-competitive. The Kis of the other lysinal derivatives in both esterolytic and amidolytic assays were more than 103 times lower than that of leupeptin. Z-Val-lysinol, lacking the aldehyde group, was a poor competitive inhibitor. These results suggest that acyl-, acylaminoacyl-, and acylpeptidyllysinals function as a transition-state inhibitor for Achromobacter protease I.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号