首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The pattern and intensity of pigmentation have direct impact on individual fitness through various ecological factors. In a Drosophila melanogaster population from southern Japan, thoracic trident pigmentation intensity of most of the strains could be classified into Dark or Light‐type. The expression level variation of the ebony gene correlated well with this phenotype and the allelic differences in expression indicated that the variation is partly due to cis‐regulatory changes. In the ~13 kb gene region, we identified 17 nucleotide sites and 2 indels that were in complete association with the thoracic trident pigmentation intensity. Interestingly, 11 out of 19 sites located within ~0.5 kb of the core epidermis enhancer. These sites had no obvious association with the abdominal pigmentation intensity in the previously analysed African populations from Uganda and Kenya, which suggested that multiple potential mutational pathways in the cis‐regulatory control region of a single gene could lead to similar phenotypic variation within this species. We also found that the Light‐type enhancer haplotype is strongly linked to a cosmopolitan inversion, In(3R)Payne, which is predominant in warmer climatic regions in both hemispheres. The sequence pattern suggested that the strong linkage may be due to selective forces related to thermal adaptation. The inferred selection for lighter pigmentation in the Japanese population is in the opposite direction of the previously reported case of selection for darker individuals in African populations. Nevertheless, both adaptive changes involved cis‐regulatory changes of ebony, which shows that this gene is likely to be a common target of natural selection.  相似文献   

2.
Traits with a common genetic basis frequently display correlated phenotypic responses to selection or environmental conditions. In Drosophila melanogaster, pigmentation of the abdomen and a trident‐shaped region on the thorax are genetically correlated. Here, we used a pooled replicated genomewide association approach (Pool‐GWAS) to identify the genetic basis of variation in thoracic trident pigmentation in two Drosophila melanogaster populations. We confirmed the previously reported large effect of ebony and the association of the cosmopolitan inversion In(3R)Payne. For the first time, we identified tan as another major locus contributing to variation in trident pigmentation. Intriguingly, the regulatory variants of tan that were most strongly associated with female abdominal pigmentation also showed a strong association with trident pigmentation. We validated this common genetic basis in transgenic assays and found qualitatively similar effects on trident and abdominal pigmentation. Further work is required to determine whether this genetic correlation is favoured by natural selection or reflects a neutral by‐product of a shared regulatory architecture.  相似文献   

3.
Widespread pigmentation diversity coupled with a well‐defined genetic system of melanin synthesis and patterning in Drosophila provides an excellent opportunity to study phenotypes undergoing evolutionary change. Pigmentation variation is highly correlated with different ecological variables and is thought to reflect adaptations to different environments. Several studies have linked candidate genes from Drosophila melanogaster to intra‐population variation and interspecific morphological divergence, but less clearly to variation among populations forming pigmentation clines. We characterized a new thoracic trident pigmentation cline in D. melanogaster populations from eastern Australia, and applied a candidate gene approach to explain the majority of the geographically structured phenotypic variation. More melanized populations from higher latitudes tended to express less ebony than their tropical counterparts, and an independent artificial selection experiment confirmed this association. By partitioning temperature dependent effects, we showed that the genetic differences underlying clinal patterns for trident variation at 25 °C do not explain the patterns observed at 16 °C. Changes in thoracic trident pigmentation could be a common evolutionary response to climatically mediated environmental pressures. On the Australian east coast most of the changes appear to be associated with regulatory divergence of the ebony gene but this depends on temperature.  相似文献   

4.
This study presents data on inheritance of a darkened caudal peduncle (ebony) and yellow body coloration (yellow) in the gilthead sea bream (Sparus aurata). Fifteen progeny groups, obtained by crossing fish with three color phenotypes and of known origin, were analyzed. Analyzes of segregation in F1 progeny involving groups from parental crosses of wild‐type colored × wild‐type colored; ebony × ebony; yellow × yellow, showed that the parents produced the offspring only with the same phenotypes (true breeding). Crosses involving F1 wild‐type colored parents (that resulted from crosses of wild‐type parents with either ebony or yellow fish) showed in their F2 progeny groups of which their phenotypic segregations did not differ significantly from a 3 : 1 Mendelian ratio. The progeny of back‐cross of ebony × (F1 wild‐type colored × ebony) showed phenotypic segregations that did not differ significantly from the 1 : 1 Mendelian ratio. Overall, the results of the crossing experiments demonstrated that, similar to albinism described in a number of aquacultured species, ebony and yellow body coloration in S. aurata are both due to a single recessive allele. However, the yellow mutation of a gene controlling yellow pigment synthesis affects the yellow color of the whole fish body, whereas the ebony mutation causes production of melanin only in a specific area of the fish body, resulting in the development of a black coloration of the caudal peduncle. Experiments to assess culture performance showed that the color genes controlling ebony and yellow coloration had significant detrimental pleiotropic effects on growth, survival and body shape. Color mutations in the gilthead sea bream may be used as models for the study of: (i) genetic and physiological mechanisms of sterility, (ii) stress and disease resistance, (iii) effects of heterosis, (iv) genetic polymorphism in populations, and (v) methods of genetic protection in selected sea bream strains as well as in experiments on chromosome set manipulation.  相似文献   

5.
Insect body pigmentation and coloration are critical to adaption to the environment. To explore the mechanisms that drive pigmentation, we used the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) genome editing system to target the ebony gene in the non-model insect Spodoptera litura. Ebony is crucial to melanin synthesis in insects. By directly injecting Cas9 messenger RNA and ebony-specific guide RNAs into S. litura embryos, we successfully induced a typical ebony-deficient phenotype of deep coloration of the puparium and induction of melanin formation during the pupal stage. Polymerase chain reaction-based genotype analysis demonstrated that various mutations had occurred at the sites targeted in ebony. Our study clearly demonstrates the function of ebony in the puparium coloration and also provides a potentially useful marker gene for functional studies in S. litura as well as other lepidopteran pests.  相似文献   

6.
Pigmentation traits in adult Drosophila melanogaster were used in this study to investigate how phenotypic variations in continuous ecological traits can be maintained in a natural population. First, pigmentation variation in the adult female was measured at seven different body positions in 20 strains from the Drosophila melanogaster Genetic Reference Panel (DGRP) originating from a natural population in North Carolina. Next, to assess the contributions of cis‐regulatory polymorphisms of the genes involved in the melanin biosynthesis pathway, allele‐specific expression levels of four genes were quantified by amplicon sequencing using a 454 GS Junior. Among those genes, ebony was significantly associated with pigmentation intensity of the thoracic segment. Detailed sequence analysis of the gene regulatory regions of this gene indicated that many different functional cis‐regulatory alleles are segregating in the population and that variations outside the core enhancer element could potentially play important roles in the regulation of gene expression. In addition, a slight enrichment of distantly associated SNP pairs was observed in the ~10 kb cis‐regulatory region of ebony, which suggested the presence of interacting elements scattered across the region. In contrast, sequence analysis in the core cis‐regulatory region of tan indicated that SNPs within the region are significantly associated with allele‐specific expression level of this gene. Collectively, the data suggest that the underlying genetic differences in the cis‐regulatory regions that control intraspecific pigmentation variation can be more complex than those of interspecific pigmentation trait differences, where causal genetic changes are typically confined to modular enhancer elements.  相似文献   

7.
Pigmentation is a model trait for evolutionary and developmental analysis that is particularly amenable to molecular investigation in the genus Drosophila. To better understand how this phenotype evolves, we examined divergent pigmentation and gene expression over developmental time in the dark‐bodied D. americana and its light‐bodied sister species D. novamexicana. Prior genetic analysis implicated two enzyme‐encoding genes, tan and ebony, in pigmentation divergence between these species, but questions remain about the underlying molecular mechanisms. Here, we describe stages of pupal development in both species and use this staging to determine when pigmentation develops and diverges between D. americana and D. novamexicana. For the developmental stages encompassing pigment divergence, we compare mRNA expression of tan and ebony over time and between species. Finally, we use allele‐specific expression assays to determine whether interspecific differences in mRNA abundance have a cis‐regulatory basis and find evidence of cis‐regulatory divergence for both tan and ebony. cis‐regulatory divergence affecting tan had a small effect on mRNA abundance and was limited to a few developmental stages, yet previous data suggests that this divergence is likely to be biologically meaningful. Our study suggests that small and developmentally transient expression changes may contribute to phenotypic diversification more often than commonly appreciated. Recognizing the potential phenotypic impact of such changes is important for a scientific community increasingly focused on dissecting quantitative variation, but detecting these types of changes will be a major challenge to elucidating the molecular basis of complex traits.  相似文献   

8.
Cover Caption     
《Insect Science》2019,26(6):NA-NA
The common cutworm, Spodoptera litura (Lepidoptera: Noctuidae) is one of the most destructive phytophagous pests of crops. Body coloration affects how animals interact with the environment, and pigmentation also influences behavior and immunity. To explore the mechanisms that drive pigmentation, the CRISPR/Cas9 genome editing system was applied to target the ebony gene in the non‐model insect S. litura. The mutants showed the typically deep coloration during the pupal and adult stage. This study clearly demonstrates the function of ebony in the body coloration and also provides a potentially useful marker gene for functional studies in S. litura as well as other lepidopteran pests (see pages 1011–1019). Photo provided by Hong‐Lun Bi.  相似文献   

9.
Drosophila melanogaster Meigen mutants for N‐β‐alanyldopamine (NBAD) metabolism have altered levels of NBAD, dopamine and other neurotransmitters. The ebony1 mutant strain has very low levels of NBAD and higher levels of dopamine, whereas the opposite situation is observed in the tan1 mutant. Dopamine is implicated in the control of movement, memory and arousal, as well as in the regulation of sleep and wakefulness in D. melanogaster. N‐β‐alanyldopamine, which is best known as a cuticle cross‐linking agent, is also present in nervous tissue and has been proposed to promote locomotor activity in this fly. The daily locomotor activity and the sleep patterns of ebony1 and tan1 mutants are analyzed, and are compared with wild‐type flies. The tan1 mutant shows reduced locomotor activity, whereas ebony1 shows higher levels of activity than wild‐type flies, suggesting that NBAD does not promote locomotor activity. Both mutants spend less time asleep than wild‐type flies during night‐time; ebony shows more consolidated activity during night‐time and increased sleep latency, whereas tan is unable to consolidate locomotor activity and sleep in either phase of the day. The daily level of NBAD‐synthase activity is measured in vitro using wild‐type and tan1 protein extracts, and the lowest NBAD synthesis is observed at the time of higher locomotor activity. The abnormalities in several parameters of the waking/sleep cycle indicate some dysfunction in the processes that regulates these behaviours in both mutants.  相似文献   

10.
11.
Understanding a wider range of genotype–phenotype associations can be achieved through ecological and evolutionary studies of traditional laboratory models. Here, we conducted the first large‐scale geographic analysis of genetic variation within and among wild zebrafish (Danio rerio) populations occurring in Nepal, India, and Bangladesh, and we genetically compared wild populations to several commonly used lab strains. We examined genetic variation at 1832 polymorphic EST‐based single nucleotide polymorphisms (SNPs) and the cytb mitochondrial gene in 13 wild populations and three lab strains. Natural populations were subdivided into three major mitochondrial DNA clades with an average among‐clade sequence divergence of 5.8%. SNPs revealed five major evolutionarily and genetically distinct groups with an overall FST of 0.170 (95% CI 0.105–0.254). These genetic groups corresponded to discrete geographic regions and appear to reflect isolation in refugia during past climate cycles. We detected 71 significantly divergent outlier loci (3.4%) and nine loci (0.5%) with significantly low FST values. Valleys of reduced heterozygosity, consistent with selective sweeps, surrounded six of the 71 outliers (8.5%). The lab strains formed two additional groups that were genetically distinct from all wild populations. An additional subset of outlier loci was consistent with domestication selection within lab strains. Substantial genetic variation that exists in zebrafish as a whole is missing from lab strains that we analysed. A combination of laboratory and field studies that incorporates genetic variation from divergent wild populations along with the wealth of molecular information available for this model organism provides an opportunity to advance our understanding of genetic influences on phenotypic variation for a vertebrate species.  相似文献   

12.
Genes with major phenotypic effects facilitate quantifying the contribution of genetic vs. plastic effects to adaptive divergence. A classical example is Ectodysplasin (Eda), the major gene controlling lateral plate phenotype in three‐spined stickleback. Completely plated marine stickleback populations evolved repeatedly towards low‐plated freshwater populations, representing a prime example of parallel evolution by natural selection. However, many populations remain polymorphic for lateral plate number. Possible explanations for this polymorphism include relaxation of selection, disruptive selection or a balance between divergent selection and gene flow. We investigated 15 polymorphic stickleback populations from brackish and freshwater habitats in coastal North‐western Europe. At each site, we tracked changes in allele frequency at the Eda gene between subadults in fall, adults in spring and juveniles in summer. Eda genotypes were also compared for body size and reproductive investment. We observed a fitness advantage for the Eda allele for the low morph in freshwater and for the allele for the complete morph in brackish water. Despite these results, the differentiation at the Eda gene was poorly correlated with habitat characteristics. Neutral population structure was the best predictor of spatial variation in lateral plate number, suggestive of a substantial effect of gene flow. A meta‐analysis revealed that the signature of selection at Eda was weak compared to similar studies in stickleback. We conclude that a balance between divergent selection and gene flow can maintain stickleback populations polymorphic for lateral plate number and that ecologically relevant genes may not always contribute much to local adaptation, even when targeted by selection.  相似文献   

13.
Phenotypic variation within a species is often structured geographically in clines. In Drosophila americana, a longitudinal cline for body colour exists within North America that appears to be due to local adaptation. The tan and ebony genes have been hypothesized to contribute to this cline, with alleles of both genes that lighten body colour found in D. americana. These alleles are similar in sequence and function to the allele fixed in D. americana's more lightly pigmented sister species, Drosophila novamexicana. Here, we examine the frequency and geographic distribution of these D. novamexicana‐like alleles in D. americana. Among alleles from over 100 strains of D. americana isolated from 21 geographic locations, we failed to identify additional alleles of tan or ebony with as much sequence similarity to D. novamexicana as the D. novamexicana‐like alleles previously described. However, using genetic analysis of 51 D. americana strains derived from 20 geographic locations, we identified one new allele of ebony and one new allele of tan segregating in D. americana that are functionally equivalent to the D. novamexicana allele. An additional 5 alleles of tan also showed marginal evidence of functional similarity. Given the rarity of these alleles, however, we conclude that they are unlikely to be driving the pigmentation cline. Indeed, phenotypic distributions of the 51 backcross populations analysed indicate a more complex genetic architecture, with diversity in the number and effects of loci altering pigmentation observed both within and among populations of D. americana. This genetic heterogeneity poses a challenge to association studies and genomic scans for clinal variation, but might be common in natural populations.  相似文献   

14.
The medaka fish albino mutant, i1 is one of the Tomita collection of medaka pigmentation mutants which exhibits a complete albino phenotype, because of inactivation of the tyrosinase gene due to insertion of a transposable element, Tol‐1. Recently, mosaic black‐pigmented i1 medaka fish have arisen in one of our laboratory breeding populations. Their pigmented cells have been observed in all of the tissues, including the eye and skin, in which melanin is detectable in the wild type. In this study, we analyzed the tyrosinase gene of revertants and showed Tol‐1 to have been precisely excised from the gene, suggesting a causal relationship. Mosaic patterns of pigmentation indicate spontaneous somatic excision of the element from the tyrosinase gene. To our knowledge, this is the first transposable element with somatic excision activity demonstrated phenotypically in vertebrates. The pattern of pigmentation in mosaic revertants indicates frequencies of melanin pigments to be consistent with the numbers of melanophores per unit area of body sites, such as the eyes, head and dorsal trunk.  相似文献   

15.
This study investigated fertility selection on a flower petal pigmentation polymorphism in Clarkia gracilis ssp. sonomensis. Natural populations are typically composed of nearly 100% spotted-petal plants, although rare populations contain a majority of unspotted plants. I compared fitness values for the two morphs using a simple fertility model to estimate selection for experimental arrays of plants placed into existing populations of different phenotypic frequencies. Both male and female reproductive success were estimated as well as the pattern of mating among phenotypes. Although the separate fitness components varied from no differences to a strong advantage for spotted plants, for every situation the selection calculations predicted an increase in the frequency of the spotted allele. Pollinator behavior and postpollination mechanisms may be responsible for the fitness differences. The apparent inability of the unspotted allele to spread though most natural populations is consistent with its selective disadvantage in this study.  相似文献   

16.
The large degree of phenotypic fluctuation among isogenic cells highlighted by recent studies on stochastic gene expression confers fitness on some individuals through a ‘bet‐hedging’ strategy, when faced with different selective environments. Under a single selective environment, the fluctuation may be suppressed through evolution, as it prevents maintenance of individuals around the fittest state and/or function. However, as fluctuation can increase phenotypic diversity, similar to mutation, it may contribute to the survival of individuals even under a single selective environment. To discuss whether the fluctuation increases over the course of evolution, cycles of mutation and selection for higher GFP fluorescence were carried out in Escherichia coli. Mutant genotypes possessing broad GFP fluorescence distributions with low average values emerged under strong selection pressure. These ‘broad mutants’ appeared independently on the phylogenetic tree and increased fluctuations in GFP fluorescence were attributable to the variance in mRNA abundance. In addition to the average phenotypic change by genetic mutation, the observed increase in phenotypic fluctuation acts as an evolutionary strategy to produce an extreme phenotype under severe selective environments.  相似文献   

17.
The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole‐genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50‐fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long‐term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male–male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.  相似文献   

18.
Examining the targets of selection in crop species and their wild and weedy relatives sheds light on the evolutionary processes underlying differentiation of cultivars from progenitor lineages. On one hand, human‐mediated directional selection in crops favours traits associated with the streamlining of controllable and predictable monoculture practices alongside selection for desired trait values. On the other hand, natural selection in wild and especially weedy relatives presumably favours trait values that increase the probability of escaping eradication. Gene flow between crops and wild species may also counter human‐mediated selection, promoting the evolution and persistence of weedy forms. In this issue, two studies from a group of collaborators examine diversity and divergence patterns of genes underlying two traits associated with red rice (Oryza sp.), the conspecific relative of cultivated rice (Oryza sativa) that is a non‐native weed (see Fig. 1 ). In the first study by Gross et al. (2010) , genetic variation in the major gene underlying the hallmark red pigmentation characterizing most weedy rice (Rc) is found to have a pattern consistent with non‐reversion from U.S. cultivated rice (i.e. the cultivar did not ‘go feral’). This suggests that U.S. weedy rice is not an escaped lineage derived from U.S. cultivated rice populations; weedy rice likely differentiated prior to the selective sweep occurred in this gene within cultivated rice populations. Using the major seed shattering locus sh4 gene and the neighbouring genomic region, Thurber et al. (2010) track the molecular evolutionary history of the high shattering phenotype, a trait contributing dramatically to the success of crop selection in cultivated rice as well as the persistence and expansion of weedy red rice. In this study, the shared fixation of a sh4 mutation in both cultivated rice and weedy rice indicates that weedy rice arose subsequent to the strong selective sweep leading to significant reduction in seed shattering in cultivated rice.
Figure 1 Open in figure viewer PowerPoint A weedy, brown hulled red rice individual with long awns surrounded by a field of cultivated rice (photo by A. Lawton‐Rauh).  相似文献   

19.
We have devised a general procedure to isolate enzymatic variants without selecting or screening for related phenotypic peculiarities of the organism. A high mutation rate at phoA, the structural gene for alkaline phosphatase, is found among N-methyl-N'-nitro-N-nitrosoguanidine-induced proC revertants of Escherichia coli. About 1.6% of such revertants lack alkaline phosphatase, and many others exhibit altered enzyme parameters. Three mutants studied in detail had full enzyme activity but differed from the wild type in electrophoretic mobility, thermostability, and, in one case, optimum pH for enzyme activity. Four other phosphatase variants were discovered in a survey of 50 natural E. coli isolates; their electrophoretic mobility and thermostability were different from those of the wild type. Natural and induced enzyme variants are similar enough to suggest the absence of strong selective pressures in natural populations.This work was supported by grants from the Fundación J. March and the Comisión Asesora para la Investigación Científica y Técnica.  相似文献   

20.
The gradual heterogeneity of climatic factors poses varying selection pressures across geographic distances that leave signatures of clinal variation in the genome. Separating signatures of clinal adaptation from signatures of other evolutionary forces, such as demographic processes, genetic drift and adaptation, to nonclinal conditions of the immediate local environment is a major challenge. Here, we examine climate adaptation in five natural populations of the harlequin fly Chironomus riparius sampled along a climatic gradient across Europe. Our study integrates experimental data, individual genome resequencing, Pool‐Seq data and population genetic modelling. Common‐garden experiments revealed significantly different population growth rates at test temperatures corresponding to the population origin along the climate gradient, suggesting thermal adaptation on the phenotypic level. Based on a population genomic analysis, we derived empirical estimates of historical demography and migration. We used an FST outlier approach to infer positive selection across the climate gradient, in combination with an environmental association analysis. In total, we identified 162 candidate genes as genomic basis of climate adaptation. Enriched functions among these candidate genes involved the apoptotic process and molecular response to heat, as well as functions identified in studies of climate adaptation in other insects. Our results show that local climate conditions impose strong selection pressures and lead to genomic adaptation despite strong gene flow. Moreover, these results imply that selection to different climatic conditions seems to converge on a functional level, at least between different insect species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号