共查询到20条相似文献,搜索用时 15 毫秒
1.
The Contribution of Quantitative Trait Loci and Neutral Marker Loci to the Genetic Variances and Covariances among Quantitative Traits in Random Mating Populations
下载免费PDF全文

Using Cockerham's approach of orthogonal scales, we develop genetic models for the effect of an arbitrary number of multiallelic quantitative trait loci (QTLs) or neutral marker loci (NMLs) upon any number of quantitative traits. These models allow the unbiased estimation of the contributions of a set of marker loci to the additive and dominance variances and covariances among traits in a random mating population. The method has been applied to an analysis of allozyme and quantitative data from the European oyster. The contribution of a set of marker loci may either be real, when the markers are actually QTLs, or apparent, when they are NMLs that are in linkage disequilibrium with hidden QTLs. Our results show that the additive and dominance variances contributed by a set of NMLs are always minimum estimates of the corresponding variances contributed by the associated QTLs. In contrast, the apparent contribution of the NMLs to the additive and dominance covariances between two traits may be larger than, equal to or lower than the actual contributions of the QTLs. We also derive an expression for the expected variance explained by the correlation between a quantitative trait and multilocus heterozygosity. This correlation explains only a part of the genetic variance contributed by the markers, i.e., in general, a combination of additive and dominance variances and, thus, provides only very limited information relative to the method supplied here. 相似文献
2.
Lacy RC 《Genetics》1983,104(1):81-94
Patterns of genetic variation within and between populations of five species of mycophagous Drosophila were examined by gel electrophoresis of several polymorphic loci. Populations of the five species could not be shown to be subdivided into sympatric host-adapted races. Statistically significant, but small, between-host differences in gene frequencies were observed at three of 15 loci. Mean gene frequencies at all loci were similar in New York and Tennessee, and, with one exception, relatively little genetic differentiation was observed among study sites within those two regions. Gene frequencies generally were stable over several years of collecting as well. The unpredictable nature of the fungal hosts may preclude the site fidelity and continuity of diversifying selection necessary for adaptive divergence of populations. 相似文献
3.
We investigate the inside dynamics of solutions to integrodifference equations to understand the genetic consequences of a population with nonoverlapping generations undergoing range expansion. To obtain the inside dynamics, we decompose the solution into neutral genetic components. The inside dynamics are given by the spatiotemporal evolution of the neutral genetic components. We consider thin-tailed dispersal kernels and a variety of per capita growth rate functions to classify the traveling wave solutions as either pushed or pulled fronts. We find that pulled fronts are synonymous with the founder effect in population genetics. Adding overcompensation to the dynamics of these fronts has no impact on genetic diversity in the expanding population. However, growth functions with a strong Allee effect cause the traveling wave solution to be a pushed front preserving the genetic variation in the population. In this case, the contribution of each neutral fraction can be computed by a simple formula dependent on the initial distribution of the neutral fractions, the traveling wave solution, and the asymptotic spreading speed. 相似文献
4.
5.
Using a quantitative genetic model, this paper compares four different methods for estimating genetic variance components. Given various genetic parameters, data were generated and estimates computed. The number of negative estimates, the sample mean, the sample variance, and the sample mean squared error were computed for each method. It is shown that, if the genetic values are not very small, the traditional MATHER -JINKS method is at least as good as any other method. The ML method might be preferable only if the genetic values are very small and the number of loci large. 相似文献
6.
胚乳性状的世代遗传方差 总被引:12,自引:1,他引:12
本文论述由两个纯系杂交而衍生的各种世代群体的胚乳性状的遗传方差分量。根据有关世代胚乳的遗传组成和加性-显性模型下的基因效应,导出了它们的总的、株间的和自交世代的遗传方差,并分别列于表1—3。 相似文献
7.
Variances of the average numbers of nucleotide substitutions within and between populations 总被引:25,自引:6,他引:25
Statistical methods for computing the variances of nucleotide diversity within populations and of nucleotide divergence between populations are developed. Both variances are computed by finding the phylogenetic relationships of the DNA sequences studied through the unweighted pair-group method or some other tree-making method. The methods developed are applicable to both DNA sequence and restriction-site map data. 相似文献
8.
Realized Sampling Variances of Estimates of Genetic Parameters and the Difference between Genetic and Phenotypic Correlations 总被引:3,自引:0,他引:3
下载免费PDF全文

A data set of 1572 heritability estimates and 1015 pairs of genetic and phenotypic correlation estimates, constructed from a survey of published beef cattle genetic parameter estimates, provided a rare opportunity to study realized sampling variances of genetic parameter estimates. The distribution of both heritability estimates and genetic correlation estimates, when plotted against estimated accuracy, was consistent with random error variance being some three times the sampling variance predicted from standard formulae. This result was consistent with the observation that the variance of estimates of heritabilities and genetic correlations between populations were about four times the predicted sampling variance, suggesting few real differences in genetic parameters between populations. Except where there was a strong biological or statistical expectation of a difference, there was little evidence for differences between genetic and phenotypic correlations for most trait combinations or for differences in genetic correlations between populations. These results suggest that, even for controlled populations, estimating genetic parameters specific to a given population is less useful than commonly believed. A serendipitous discovery was that, in the standard formula for theoretical standard error of a genetic correlation estimate, the heritabilities refer to the estimated values and not, as seems generally assumed, the true population values. 相似文献
9.
10.
BackgroundIn wild plant populations, genetic divergence within continuous stands is common, sometimes at very short geographical scales. While restrictions to gene flow combined with local inbreeding and genetic drift may cause neutral differentiation among subpopulations, microgeographical variations in environmental conditions can drive adaptive divergence through natural selection at some targeted loci. Such phenomena have recurrently been observed in plant populations occurring across sharp environmental boundaries, but the interplay between selective processes and neutral genetic divergence has seldom been studied.MethodsWe assessed the extent of within-stand neutral and environmentally-driven divergence in the Neotropical tree Eperua falcate Aubl. (Fabaceae) through a genome-scan approach. Populations of this species grow in dense stands that cross the boundaries between starkly contrasting habitats. Within-stand phenotypic and candidate-gene divergence have already been proven, making this species a suitable model for the study of genome-wide microgeographic divergence. Thirty trees from each of two habitats (seasonally flooded swamps and well-drained plateaus) in two separate populations were genotyped using thousands of AFLPs markers. To avoid genotyping errors and increase marker reliability, each sample was genotyped twice and submitted to a rigorous procedure for data cleaning, which resulted in 1196 reliable and reproducible markers.ResultsDespite the short spatial distances, we detected within-populations genetic divergence, probably caused by neutral processes, such as restrictions in gene flow. Moreover, habitat-structured subpopulations belonging to otherwise continuous stands also diverge in relation to environmental variability and habitat patchiness: we detected convincing evidence of divergent selection at the genome-wide level and for a fraction of the analyzed loci (comprised between 0.25% and 1.6%). Simulations showed that the levels of differentiation for these outliers are compatible with scenarios of strong divergent selection. 相似文献
11.
Assuming equality of genotypic effects over different loci, this paper provides an ML procedure for estimating genetic parameters for quantitative traits from autotetraploid self-fertilized populations. The results are illustrated by computer generated data involving P1, P2, F2, B1 and B2 populations. 相似文献
12.
Using Molecular Markers to Estimate Quantitative Trait Locus Parameters: Power and Genetic Variances for Unreplicated and Replicated Progeny 总被引:5,自引:4,他引:5
下载免费PDF全文

Many of the progeny types used to estimate quantitative trait locus (QTL) parameters can be replicated, e.g., recombinant inbred, doubled haploid, and F3 lines. These parameters are estimated using molecular markers or QTL genotypes estimated from molecular markers as independent variables. Experiment designs for replicated progeny are functions of the number of replications per line (r) and the number of replications per QTL genotype (n). The value of n is determined by the size of the progeny population (N), the progeny type, and the number of simultaneously estimated QTL parameters (q - 1). Power for testing hypotheses about means of QTL genotypes is increased by increasing r and n, but the effects of these factors have not been quantified. In this paper, we describe how power is affected by r, n, and other factors. The genetic variance between lines nested in QTL genotypes (sigma 2n:q) is the fraction of the genetic variance between lines (sigma 2n) which is not explained by simultaneously estimated intralocus and interlocus QTL parameters (phi 2Q); thus, sigma 2n:q = sigma 2n - phi 2Q. If sigma 2n:q not equal to 0, then power is not efficiently increased by increasing r and is maximized by maximizing n and using r = 1; however, if sigma 2n:q = 0, then r and n affect power equally and power is efficiently increased by increasing r and is maximized by maximizing N.r. Increasing n efficiently increases power for a wide range of values of sigma 2n:q.sigma 2n:q = 0 when the genetic variance between lines is fully explained by QTL parameters (sigma 2n = phi 2Q).(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
13.
E. Ch. Wessely 《Biometrical journal. Biometrische Zeitschrift》1978,20(2):161-168
The variance between and within backcrosses of two populations is partitioned on the base of (I) multinomially distributed numbers of effects of specific chromosomes taking (II) recombination into account and on the base of (III) normally distributed sums of gene effects. The method of estimation makes use of a specific structure of data with backcross parents taken from different generations of random mating reproduction of crosses between the two populations. 相似文献
14.
Background
The Mediterranean fruit fly Ceratitis Capitata (DIPTERA: Tephritidae) is a major agricultural pest in Argentina. One main cause for the success of non-contaminant control programs based on genetic strategies is compatibility between natural and laboratory germplasms.A comprehensive characterization of the fruit fly based on genetic studies and compatibility analysis was undertaken on two founder populations from the provinces of Buenos Aires and Mendoza, used in pioneering sterile male technique control programmes in our country. The locations are 1,000 km apart from each other.Methodology/Principal Findings
We compared the genetic composition of both populations based on cytological, physiological and morphological characterization. Compatibility studies were performed in order to determine the presence of isolation barriers. Results indicate that the Buenos Aires germplasm described previously is partially different from that of the Mendoza population. Both laboratory colonies are a reservoir of mutational and cytological polymorphisms. Some sexual chromosome variants such as the XL and the YL resulting from attachment of a B-chromosome to the X-chromosome or Y-chromosome behave as a lethal sex-linked factor. Our results also show incompatibility between both germplasms and pre-zygotic isolation barriers between them. Our evidence is consistent with the fact that polymorphisms are responsible for the lack of compatibility.Conclusions
The genetic control mechanism should be directly produced in the germplasm of the target population in order to favour mating conditions. This is an additional requirement for the biological as well as economic success of control programs based on genetic strategies such as the sterile insect technique. The analysis of representative samples also revealed natural auto-control mechanisms which could be used in modifying pest population dynamics. 相似文献15.
16.
About 500 second and 500 third chromosomes were extracted, using the marked inversion technique, from the Orlando-Lake Placid, Florida, population. From the experiments using these chromosomes, the following findings were obtained: (1) The frequencies of lethal-carrying chromosomes were 0.37 in the second and 0.55 in the third chromosomes. (2) The size of the population was estimated to be effectively infinite, on the basis of the allelism rate of lethal-carrying chromosomes. (3) The detrimental and lethal loads for viability were, respectively, 0.40 and 0.45 for the second and 0.52 and 0.78 for the third chromosomes. Consequently, the detrimental to lethal load ratio is 0.90 for the second and 0.67 for the third chromosomes. (4) Lethal genes were shown to be deleterious when heterozygous. (5) The average degree of dominance for mildly deleterious genes (viability polygenes) was estimated to be nearly 0.5, although the confidence interval is large. (6) Additive (sigma( 2) (A)) and dominance (sigma(2) ( D)) variances of viability were estimated by using a partial diallel cross method. The results were (see PDF) and (see PDF) for the second chromosomes. (7) Environmental variances of viability were estimated. The result indicates that the heterozygotes are more homeostatic than the homozygotes. The most striking finding is that the additive variance is larger than expected on the classical hypothesis from the detrimental load. Several possible explanations for the discrepancy are offered. The most likely cause, we suggest, is genotype-environment interaction (diversifying selection) acting on viability polygenes. Overdominance is inconsistent with the low dominance variance, and frequency-dependent selection also appears unlikely as an explanation. 相似文献
17.
A. Hastings 《Genetics》1989,121(4):857-860
I determine the contribution of linkage disequilibrium to genetic variances using results for two loci and for induced or marginal systems. The analysis allows epistasis and dominance, but assumes that mutation is weak relative to selection. The linkage disequilibrium component of genetic variance is shown to be unimportant for unlinked loci if the gametic mutation rate divided by the harmonic mean of the pairwise recombination rates is much less than one. For tightly linked loci, linkage disequilibrium is unimportant if the gametic mutation rate divided by the (induced) per locus selection is much less than one. 相似文献
18.
19.
Witherspoon DJ Wooding S Rogers AR Marchani EE Watkins WS Batzer MA Jorde LB 《Genetics》2007,176(1):351-359
The proportion of human genetic variation due to differences between populations is modest, and individuals from different populations can be genetically more similar than individuals from the same population. Yet sufficient genetic data can permit accurate classification of individuals into populations. Both findings can be obtained from the same data set, using the same number of polymorphic loci. This article explains why. Our analysis focuses on the frequency, omega, with which a pair of random individuals from two different populations is genetically more similar than a pair of individuals randomly selected from any single population. We compare omega to the error rates of several classification methods, using data sets that vary in number of loci, average allele frequency, populations sampled, and polymorphism ascertainment strategy. We demonstrate that classification methods achieve higher discriminatory power than omega because of their use of aggregate properties of populations. The number of loci analyzed is the most critical variable: with 100 polymorphisms, accurate classification is possible, but omega remains sizable, even when using populations as distinct as sub-Saharan Africans and Europeans. Phenotypes controlled by a dozen or fewer loci can therefore be expected to show substantial overlap between human populations. This provides empirical justification for caution when using population labels in biomedical settings, with broad implications for personalized medicine, pharmacogenetics, and the meaning of race. 相似文献
20.
Classical quantitative genetic analyses estimate additive and non-additive genetic and environmental components of variance from phenotypes of related individuals without knowing the identities of quantitative trait loci (QTLs). Many studies have found a large proportion of quantitative trait variation can be attributed to the additive genetic variance (VA), providing the basis for claims that non-additive gene actions are unimportant. In this study, we show that arbitrarily defined parameterizations of genetic effects seemingly consistent with non-additive gene actions can also capture the majority of genetic variation. This reveals a logical flaw in using the relative magnitudes of variance components to indicate the relative importance of additive and non-additive gene actions. We discuss the implications and propose that variance component analyses should not be used to infer the genetic architecture of quantitative traits. 相似文献