首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Attempt has been made to estimate the accuracy, predictive power, and domain of application of the PI (Padmakar-Ivan) index for modeling bioconcentration factor (BCF) of polyhalogenated biphenyls. Relative potential of PI index is investigated by comparing the results obtained using this index with those obtained from Wiener (W) and Szeged (Sz) indices. In addition, attempt has also been made to model hydrophobicity/lipophilicity (logP) of the polyhalogenated biphenyls using these indices. It was observed that these distance-based topological indices gave better results for modeling log BCF than logP.  相似文献   

2.
3.
A QSAR analysis has been carried out on the toxicities of 40 mono-substituted nitrobenzenes using recently introduced PI and Sz indices, as well as older molecular redundancy (MRI) and Balaban indices (J). The results have shown that no statistically significant mono-parametric QSAR models are possible. Also, that along with PI, Sz, MRI and J indices are the appropriate parameters to be used in developing multiparametric QSAR models. The toxicities of nitrobenzenes are well predicted by a penta-parametric model consisting of PI, Sz, J, MRI and Ip(1) (an indicator parameter taking care of the effect of substitution at 2-position) as the correlating parameters. The predictive ability of the model is determined by a cross-validation method.  相似文献   

4.
QSAR calculations of (13)C NMR chemical shifts (ppm, TMS=0) on carbinol carbon atoms have been attempted using a large set of distance based topological indices: Wiener (W)-, Szeged (Sz)-, PI (Padmakar-Ivan) and Connectivity ((m)chi, (m)chi(v)) indices. The regression analysis has shown that excellent results are obtained in multiparametric regression. The predictive power of the proposed models are discussed using cross-validated parameters.  相似文献   

5.
Aromatic stabilities of acenes and helicenes, which are responsible for their biological, environmental and cancerous behavior have been modeled using a newly introduced Sadhana (Sd) and A indices. The results are compared with those obtained from PI (Padmakar-Ivan) index. The regression analysis has shown that excellent results are obtained by considering acenes and helicenes as separate classes of isomeric benzenoid hydrocarbons and that A index is better index than both PI and Sd indices.  相似文献   

6.
7.
The two uncharged compounds 25,26,27,28-(2-N,N-di methyldithiocarbamoylethoxy)calix[4]arene (1) and 25,26,27,28- (2-methylthioethoxy)calix[4]arene (2) are effective extractants for transferring Hg(II), Ag(I), Pd(II) and Au(III) from aqueous solution into chloroform. The electronic absorption spectra of 1 and 2 show additional bands at long wavelength upon complexation with AuCl4, PdCl42− and PdBr42−, and analogous bands for Hg2+ and Ag+ with 1. For 1 these new bands are considered to be either of the charge transfer type or transitions within the C=S moiety. These new bands for the complexes with 2 are assigned to LMCT transitions of the S → M type. These spectral features are used to obtain information about the solution structures of the complexes that are formed between these metal ions and both 1 and 2.  相似文献   

8.
9.
PAR-2 (protease-activated receptor 2) is a GPCR (G-protein-coupled receptor) that can elicit both G-protein-dependent and -independent signals. We have shown previously that PAR-2 simultaneously promotes Galphaq/Ca2+-dependent activation and beta-arrestin-1-dependent inhibition of class IA PI3K (phosphoinositide 3-kinase), and we sought to characterize further the role of beta-arrestins in the regulation of PI3K activity. Whereas the ability of beta-arrestin-1 to inhibit p110alpha (PI3K catalytic subunit alpha) has been demonstrated, the role of beta-arrestin-2 in PI3K regulation and possible differences in the regulation of the two catalytic subunits (p110alpha and p110beta) associated with p85alpha (PI3K regulatory subunit) have not been examined. In the present study we have demonstrated that: (i) PAR-2 increases p110alpha- and p110beta-associated lipid kinase activities, and both p110alpha and p110beta are inhibited by over-expression of either beta-arrestin-1 or -2; (ii) both beta-arrestin-1 and -2 directly inhibit the p110alpha catalytic subunit in vitro, whereas only beta-arrestin-2 directly inhibited p110beta; (iii) examination of upstream pathways revealed that PAR-2-induced PI3K activity required the small GTPase Cdc (cell-division cycle)42, but not tyrosine phosphorylation of p85; and (iv) beta-arrestins inhibit PAR-2-induced Cdc42 activation. Taken together, these results indicated that beta-arrestins could inhibit PAR-2-stimulated PI3K activity, both directly and through interference with upstream pathways, and that the two beta-arrestins differ in their ability to inhibit the p110alpha and p110beta catalytic subunits. These results are particularly important in light of the growing interest in PAR-2 as a pharmacological target, as commonly used biochemical assays that monitor G-protein coupling would not screen for beta-arrestin-dependent signalling events.  相似文献   

10.
Minocycline has been shown to have remarkably neuroprotective qualities, but underlying mechanisms remain elusive. We reported here the robust neuroprotection by minocycline against glutamate-induced apoptosis through regulations of p38 and Akt pathways. Pre-treatment of cerebellar granule neurons (CGNs) with minocycline (10-100 microm) elicited a dose-dependent reduction of glutamate excitotoxicity and blocked glutamate-induced nuclear condensation and DNA fragmentations. Using patch-clamping and fluorescence Ca2+ imaging techniques, it was found that minocycline neither blocked NMDA receptors, nor reduced glutamate-caused rises in intracellular Ca2+. Instead, confirmed by immunoblots, minocycline in vivo and in vitro was shown to directly inhibit the activation of p38 caused by glutamate. A p38-specific inhibitor, SB203580, also attenuated glutamate excitotoxicity. Furthermore, the neuroprotective effects of minocycline were blocked by phosphatidylinositol 3-kinase (PI3-K) inhibitors LY294002 and wortmannin, while pharmacologic inhibition of glycogen synthase kinase 3beta (GSK3beta) attenuated glutamate-induced apoptosis. In addition, immunoblots revealed that minocycline reversed the suppression of phosphorylated Akt and GSK3beta caused by glutamate, as were abolished by PI3-K inhibitors. These results demonstrate that minocycline prevents glutamate-induced apoptosis in CGNs by directly inhibiting p38 activity and maintaining the activation of PI3-K/Akt pathway, which offers a novel modality as to how the drug exerts protective effects.  相似文献   

11.
Influenza A virus infection activates the phosphatidylinositol 3-kinase (PI3K)/Akt pathway by binding influenza A virus NS1 protein to the p85beta regulatory subunit of PI3K. In this study, we report that NS1 binds to the inter-SH2 (iSH2) domain of p85beta. Mutational analyses on p85beta iSH2 domain defined that Val-573 is the critical amino acid (AA) that mediates NS1 and p85beta interaction. In reciprocal gain of function experiments with p85alpha, we demonstrated that mutation to Val at Met-582 leads to NS1 binding and increased PI3K activity. Molecular modeling based on our experimental results suggested that, in addition to the interaction interface between the NS1 SH3 binding motif 1 (AA 164-167) and p85beta Val-573, AA 137-142 in NS1 might interact with p85beta. Indeed, mutations of AA 141 and 142 in NS1 disrupted the interaction between NS1 and p85beta. Mutant virus PR8-NS1-141/142 was not able to activate Akt phosphorylation. Furthermore, PI3K assays demonstrated that, in wild-type virus-infected cells, p85beta-associated PI3K activity was increased significantly. In contrast, in the mutant virus-infected cells containing mutant NS1 unable to interact with p85beta, the p85beta-associated PI3K activity up-regulation was not seen, suggesting that PI3K up-regulation is dependent upon the interaction between NS1 and p85beta. Competition experiments and the immunoprecipitation studies demonstrated that NS1, p85beta, and p110 form a complex in cells. Finally, the mechanism by which binding of NS1 to p85beta regulates PI3K activity was discussed based on a predicted structural model of NS1-p85-p110 complex.  相似文献   

12.
Studies ex vivo have shown that phosphoinositide 3-kinase (PI3K) activity is necessary but not sufficient for insulin-stimulated glucose uptake. Unexpectedly, mice lacking either of the PI3K regulatory subunits p85alpha or p85beta exhibit increased insulin sensitivity. The insulin hypersensitivity is particularly unexpected in p85alpha-/- p55alpha-/- p50alpha-/- mice, where a decrease in p110alpha and p110beta catalytic subunits was observed in insulin-sensitive tissues. These results raised the possibility that decreasing total PI3K available for stimulation by insulin might circumvent negative feedback loops that ultimately shut off insulin-dependent glucose uptake in vivo. Here we present results arguing against this explanation. We show that p110alpha+/- p110beta+/- mice exhibit mild glucose intolerance and hyperinsulinemia in the fasted state. Unexpectedly, p110alpha+/- p110beta+/- mice showed a approximately 50% decrease in p85 expression in liver and muscle. Consistent with this in vivo observation, knockdown of p110 by RNA interference in mammalian cells resulted in loss of p85 proteins due to decreased protein stability. We propose that insulin sensitivity is regulated by a delicate balance between p85 and p110 subunits and that p85 subunits mediate a negative role in insulin signaling independent of their role as mediators of PI3K activation.  相似文献   

13.
14.
The results are presented for the deconvolution of IR spectra of disaccharides and polysaccharides with alpha and beta configurations of the 1 --> 4 glycosidic linkage (maltose, cellobiose, amylose, and cellulose), as well as of their corresponding monosaccharides (alpha- and beta-D-glucose) in the 1200-920 cm(-1) frequency range. It is established that a characteristic of di- and polysaccharides with 1 --> 4 glycosidic linkage is the appearance of new absorption bands in the 1175-1140 cm(-1) spectral range, as opposed to the IR spectra of monosaccharides. This can be a spectroscopic manifestation of the glycosidic linkage formation. In the 1000-970 cm(-1) frequency range, absorption bands, which are not observed in the monomer spectrum, are separated as a result of the deconvolution of the IR spectra of cellobiose and cellulose. The number of bands in this range remains unchanged for maltose and amylose, as compared to the monomer spectra. It is shown that the application of the method of deconvolution leads to a considerable enhancement in the resolution of the absorption bands in the IR spectra of mono-, di-, and polysaccharides.  相似文献   

15.
Phosphoinositide (PI) 3-kinases play an important role in regulating the adhesive function of a variety of cell types through affinity modulation of integrins. Two type I PI 3-kinase isoforms (p110 beta and p110 gamma) have been implicated in G(i)-dependent integrin alpha(IIb)beta(3) regulation in platelets, however, the mechanisms by which they coordinate their signaling function remains unknown. By employing isoform-selective PI 3-kinase inhibitors and knock-out mouse models we have identified a unique mechanism of PI 3-kinase signaling co-operativity in platelets. We demonstrate that p110 beta is primarily responsible for G(i)-dependent phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) production in ADP-stimulated platelets and is linked to the activation of Rap1b and AKT. In contrast, defective integrin alpha(IIb)beta(3) activation in p110 gamma(-/-) platelets was not associated with alterations in the levels of PI(3,4)P(2) or active Rap1b/AKT. Analysis of the effects of active site pharmacological inhibitors confirmed that p110 gamma principally regulated integrin alpha(IIb)beta(3) activation through a non-catalytic signaling mechanism. Inhibition of the kinase function of PI 3-kinases, combined with deletion of p110 gamma, led to a major reduction in integrin alpha(IIb)beta(3) activation, resulting in a profound defect in platelet aggregation, hemostatic plug formation, and arterial thrombosis. These studies demonstrate a kinase-independent signaling function for p110 gamma in platelets. Moreover, they demonstrate that the combined catalytic and non-catalytic signaling function of p110 beta and p110 gamma is critical for P2Y(12)/G(i)-dependent integrin alpha(IIb)beta(3) regulation. These findings have potentially important implications for the rationale design of novel antiplatelet therapies targeting PI 3-kinase signaling pathways.  相似文献   

16.
Conformational changes induced by the binding of nickel to horseradish peroxidase C (HRPC) were studied by electronic absorption spectroscopy, fluorescence spectroscopy and circular dichroism spectroscopy. Incubation of HRPC with various concentrations of Ni(2+) for 5 minutes resulted in changes in the enzyme absorption spectrum, including variations in the intensities of the Soret, beta and charge transfer (CT1) bands absorption, shift in the Soret, beta and CT1 bands maxima and absorption increase at 275 nm. Increases in the enzyme's intrinsic fluorescence as determined by fluorescence spectroscopy, as well as changes in the alpha-helical content, as determined by circular dichroism spectroscopy, were also found. Correlatively, alterations of the enzymatic activity by Ni(2+) were studied by following the H(2)O(2)-mediated oxidation of o-dianisidine and 2,2'-azinobis(3-ethylbenzothiazolinesulfonic acid) (ABTS) by HRPC. With both reducing substrates, it was found that in the presence of sufficient amount of enzyme, 1-10 mM nickel would enhance the enzymatic activity, while higher Ni(2+) concentrations (20-50 mM) would inhibit it. The enzyme was completely inhibited after 5 minutes incubation in 50 mM Ni(2+). Prolonged incubation would induce complete inhibition at lower Ni(2+) concentrations. Spectrophotometry investigations also showed that inhibitory concentrations of Ni(2+) altered compounds I and II formation, compound II being the first affected. Based on spectrophotometry, fluorescence and circular dichroism spectroscopy, and data on compounds I and II formation, a scheme is suggested for HRPC conformational changes in different Ni(2+) concentrations. HRPC was found to have four potential attachment sites for Ni(2+) which were sequentially occupied in a dose- and time-dependent manner by the metallic ion.  相似文献   

17.
The magnetic circular-dichroism (m.c.d.) spectra in the temperature range 1.5-100 K and the electronic absorption spectra at 4.2 and 295 K were measured for a number of desulpho xanthine oxidase derivatives. There were no significant differences between the absorption spectra that could be attributed to molybdenum. However, the visible-region m.c.d. spectrum of the ethanediol-treated metalloprotein (which gives rise to the Desulpho Inhibited e.p.r. signal) contained features assignable to Mo(V) absorption bands. This is the first report of the detection of optical bands of Mo(V) in an enzyme in the presence of other chromophoric centres.  相似文献   

18.
Phosphoinositide 3-kinases (PI3Ks) play an important role in a variety of cellular functions, including phagocytosis. PI3Ks are activated during phagocytosis induced by several receptors and have been shown to be required for phagocytosis through the use of inhibitors such as wortmannin and LY294002. Mammalian cells have multiple isoforms of PI3K, and the role of the individual isoforms during phagocytosis has not been addressed. The class I PI3Ks consist of a catalytic p110 isoform associated with a regulatory subunit. Mammals have three genes for the class IA p110 subunits encoding p110alpha, p110beta, and p110delta and one gene for the class IB p110 subunit encoding p110gamma. Here we report a specific recruitment of p110beta and p110delta (but not p110alpha) isoforms to the nascent phagosome during apoptotic cell phagocytosis by fibroblasts. By microinjecting inhibitory antibodies specific to class IA p110 subunits, we have shown that p110beta is the major isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary mouse macrophages. Macrophages from mice expressing a catalytically inactive form of p110delta showed no defect in the phagocytosis of apoptotic cells and IgG-opsonized particles, confirming the lack of a major role for p110delta in this process. Similarly, p110gamma-deficient macrophages phagocytosed apoptotic cells normally. Our findings demonstrate that p110beta is the major class I catalytic isoform required for apoptotic cell and Fcgamma receptor-mediated phagocytosis by primary macrophages.  相似文献   

19.
We have attempted to develop quantitative structure-toxicity relationships (QSTRs) to predict hydrophobicity (logP) as well as toxicity (pEC50 microm) of benzene derivatives using recently introduced Padmakar-Ivan (PI) index. The results have shown that both logP as well as pEC50 of benzene derivatives can be modelled excellently in multiparametric models in that the PI index and some indicator parameters are involved. The predictive ability of the models is discussed on the basis of the cross-validation method. The superiority of the PI index over several other topological indices is critically examined.  相似文献   

20.
In the medullary thick ascending limb, inhibiting the basolateral NHE1 Na(+)/H(+) exchanger with nerve growth factor (NGF) induces actin cytoskeleton remodeling that secondarily inhibits apical NHE3 and transepithelial HCO(3)(-) absorption. The inhibition by NGF is mediated 50% through activation of extracellular signal-regulated kinase (ERK). Here we examined the signaling pathway responsible for the remainder of the NGF-induced inhibition. Inhibition of HCO(3)(-) absorption was reduced 45% by the phosphatidylinositol 3-kinase (PI3K) inhibitors wortmannin or LY294002 and 50% by rapamycin, a specific inhibitor of mammalian target of rapamycin (mTOR), a downstream effector of PI3K. The combination of a PI3K inhibitor plus rapamycin did not cause a further reduction in the inhibition by NGF. In contrast, the combination of a PI3K inhibitor plus the MEK/ERK inhibitor U0126 completely eliminated inhibition by NGF. Rapamycin decreased NGF-induced inhibition of basolateral NHE1 by 45%. NGF induced a 2-fold increase in phosphorylation of Akt, a PI3K target linked to mTOR activation, and a 2.2-fold increase in the activity of p70 S6 kinase, a downstream effector of mTOR. p70 S6 kinase activation was blocked by wortmannin and rapamycin, consistent with PI3K, mTOR, and p70 S6 kinase in a linear pathway. Rapamycin-sensitive inhibition of NHE1 by NGF was associated with an increased level of phosphorylated mTOR in the basolateral membrane domain. These findings indicate that NGF inhibits HCO(3)(-) absorption in the medullary thick ascending limb through the parallel activation of PI3K-mTOR and ERK signaling pathways, which converge to inhibit NHE1. The results identify a role for mTOR in the regulation of Na(+)/H(+) exchange activity and implicate NHE1 as a possible downstream effector contributing to mTOR's effects on cell growth, proliferation, survival, and tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号