首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
The chemistry in a supersonic plasma source flow was studied as a laboratory model for interstellar chemical evolution. It is important to match the similarity parameters for cosmic and laboratory conditions, which connect the temporal and spatial scales of the two cases. The apparatus simulated the conditions in a molecular cloud with respect to ion-molecule reaction fraction temperature, and non-equilibrium kinetics. The plasma flow was found to be cold enough, by the radical expansion, to produce polyatomic molecules. From the simple atomic plasma as reactant, cyanopolyyne and unsaturated hydrocarbons were synthesized in the present experiment. These molecules are also inherent in molecular clouds. The reaction mechanism is discussed.  相似文献   

7.
8.
Relative abundances for molecules observed by radio astronomical techniques have been determined for several interstellar regions with differing physical properties.  相似文献   

9.
10.
Relative abundances for molecules observed by radio astronomical techniques have been determined for several interstellar regions with differing physical properties.  相似文献   

11.
Three generations of organic molecules in space are considered: interstellar molecules, molecules synthesised in protosolar cloud and molecules synthesised on the Earth. It is shown that there is no possibilities for amino acid polymers to be synthesised under interstellar cloud conditions. Molecules of the second generation were disintegrated during the Earth accumulation period. The problem of the origin of life is connected with the evolution of molecules of the third generation.  相似文献   

12.
13.
14.
Taking into account results of numerous experiments, the variability of the energy spectra of cosmic rays (protons and helium nuclei) in the energy range of 10 GeV to ~107 GeV is explained on the basis of a hypothesis of the existence of two variable sources close to the Sun. The first (soft) surfatron source (with a size of ~100 AU) is located at the periphery of the heliosphere. The second (hard) surfatron source (with a size of ~1 pc) is situated in the Local Interstellar Cloud (LIC) at a distance of <1 pc. The constant background is described by a power-law spectrum with a slope of ~2.75. The variable heliospheric surfatron source is described by a power-law spectrum with a variable amplitude, slope, and cutoff energy, the maximum cutoff energy being in the range of E СН/Z < 1000 GeV. The variable surfatron source in the LIC is described by a power-law spectrum with a variable amplitude, slope, and cut-off energy, the maximum cut-off energy being E СL/Z ≤ 3 × 106 GeV. The proposed model is used to approximate data from several experiments performed at close times. The energy of each cosmic-ray component is calculated. The possibility of surfatron acceleration of Fe nuclei (Z = 26) in the LIC up to an energy of E CL ~ 1017 eV and electron and positrons to the “knee” in the energy spectrum is predicted. By numerically solving a system of nonlinear equations describing the interaction between an electromagnetic wave and a charged particle with an energy of up to E/Z ~ 3 × 106 GeV, the possibility of trapping, confinement, and acceleration of charged cosmic-ray particles by a quasi-longitudinal plasma wave is demonstrated.  相似文献   

15.
Photolysis of mixtures of CO:NH3:H2O at 12 K results in the formation of an organic residue which is not volatile in high vacuum at room temperature. Analysis of this fraction by GC-MS resulted in the detection of C2–C3 hydroxy acids and hydroxy amides, glycerol, urea, glycine, hexamethylene tetramine, formamidine and ethanolamine. Use of isotopically labeled gases made it possible to establish that the observed products were not contaminants. The reaction pathways for the formation of these products were determined from the position of the isotopic labels in the mass spectral fragments. The significance of these findings to the composition of comets and the origins of life is discussed.  相似文献   

16.
As of the present, a significant number of small molecules have been discovered in the interstellar medium. The largest molecule unambiguously detected, HC11N, has only thirteen atoms. In this article, the prospects for observing far more complex species than this in interstellar clouds are discussed as are the mechanisms by which such complex species might be synthesized.  相似文献   

17.
18.
19.
In the central nervous system, glycine is a co-agonist with glutamate at the N-methyl-D-aspartate subtype of glutamate receptors and also an agonist at inhibitory, strychnine-sensitive glycine receptors. The GLYT1 subtypes of glycine transporters (GLYTs) are responsible for regulation of glycine at excitatory synapses, whereas a combination of GLYT1 and GLYT2 subtypes of glycine transporters are used at inhibitory glycinergic synapses. Zn2+ is stored in synaptic vesicles with glutamate in a number of regions of the brain and is believed to play a role in modulation of excitatory neurotransmission. In this study we have investigated the actions of Zn2+ on the glycine transporters, GLYT1b and GLYT2a, expressed in Xenopus laevis oocytes and we demonstrate that Zn2+ is a noncompetitive inhibitor of GLYT1 but has no effect on GLYT2. We have also investigated the molecular basis for these differences and the relationship between the Zn2+ and proton binding sites on GLYT1. Using site-directed mutagenesis, we identified 2 histidine residues, His-243 in the large second extracellular loop (ECL2) and His-410 in the fourth extracellular loop (ECL4), as two coordinates in the Zn2+ binding site of GLYT1b. In addition, our study suggests that the molecular determinants of proton regulation of GLYT1b are localized to the 2 histidine residues (His-410 and His-421) of ECL4. The ability of Zn2+ and protons to regulate the rate of glycine transport by interacting with residues situated in ECL4 of GLYT1b suggests that this region may influence the substrate translocation mechanism.  相似文献   

20.
The exchange of glycine carboxyl carbon with CO2 catalyzed by the combination of chicken liver glycine decarboxylase (P-protein) and aminomethyl carrier protein (H-protein) was markedly inhibited by various divalent cations, although extents of inhibition by individual metal ions varied considerably. Cu2+ and Zn2+, at 100 microM, inhibited the reaction almost completely, and the inhibitions by Co2+ and Ni2+ were also significant, while Mg2+ and Mn2+ did not appreciably affect the reaction. The inhibition by Zn2+ was competitive with both bicarbonate and H-protein and non-competitive with glycine. Of the two reactions involved in the glycine-CO2 exchange, decarboxylation of glycine yielding the H-protein-bound aminomethyl moiety was not significantly affected by 100 microM Zn2+ or Cu2+, but carboxylation of the H-protein-bound aminomethyl moiety to form glycine was strongly inhibited by either Zn2+ or Cu2+. Various degrees of inhibition of the glycine-CO2 exchange by other divalent metal ions could also be accounted for by the inhibition of the carboxylation step of the exchange reaction. The primary site of the action of divalent metal ions is likely to be not P-protein but H-protein, and the binding of metal ions with the H-protein-bound intermediate of glycine decarboxylation was assumed to account for the observed marked inhibition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号