首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
CK2 phosphorylates SSRP1 and inhibits its DNA-binding activity   总被引:2,自引:0,他引:2  
  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
ErbB3-binding protein (Ebp1) promotes cell survival by preventing apoptotic DNA fragmentation through a complex with active nuclear Akt. Ebp1 phosphorylation by protein kinase C (PKC)-delta mediates its binding to nuclear Akt. In this study, we show that Ebp1 itself acts as a substrate of active caspase 3 during the programmed cell death. PKC-delta phosphorylation on Ebp1 protects it from apoptotic degradation initiated in cell-free apoptotic solution. Moreover, Ebp1 is evidently cleaved in PKC-delta-deficient cells but not in wild-type cells. Ebp1 translated from first ATG is resistant to apoptotic cleavage; by contrast, Ebp1 from second and third ATG demonstrates robust degradation, and PKC phosphorylation on S360 suppresses its cleavage by active caspase 3. Ebp1 can be digested at both D53 and D196 sites, but cleavage at D196 appears to be a prerequisite for its further degradation at D53 site. Compared with wild-type Ebp1, D196A mutant markedly protects cells from apoptosis. Thus, PKC-delta antagonizes apoptosis through phosphorylating Ebp1 and protects it from apoptotic degradation.  相似文献   

20.
Caspase cleavage of key cytoskeletal proteins, including several intermediate filament proteins, triggers the dramatic disassembly of the cytoskeleton that characterizes apoptosis. Here we describe the muscle-specific intermediate filament protein desmin as a novel caspase substrate. Desmin is cleaved selectively at a conserved Asp residue in its L1-L2 linker domain (VEMD downward arrow M(264)) by caspase-6 in vitro and in myogenic cells undergoing apoptosis. We demonstrate that caspase cleavage of desmin at Asp(263) has important functional consequences, including the production of an amino-terminal cleavage product, N-desmin, which is unable to assemble into intermediate filaments, instead forming large intracellular aggregates. Moreover, N-desmin functions as a dominant-negative inhibitor of filament assembly, both for desmin and the structurally related intermediate filament protein vimentin. We also show that stable expression of a caspase cleavage-resistant desmin D263E mutant partially protects cells from tumor necrosis factor-alpha-induced apoptosis. Taken together, these results indicate that caspase proteolysis of desmin at Asp(263) produces a dominant-negative inhibitor of intermediate filaments and actively participates in the execution of apoptosis. In addition, these findings provide further evidence that the intermediate filament cytoskeleton has been targeted systematically for degradation during apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号