首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Baker's-yeast-mediated asymmetric ethyl 3-oxobutanoate reduction using a fed-batch feeding strategy for both the 3-oxo ester and the electron donor, was explored as potential production system for enantiopure ethyl ( S )-3-hydroxybutanoate. The dual feed strategy was based on kinetic and stoichiometric data. One major aspect is the effect of high product concentrations on the progress of the reduction. According to initial rate experiments, product inhibition occurs at concentrations above 600 mM product causing a 10-fold decrease of the initial biomass-specific reduction rate. By using optimized feed rates and a biomass concentration of 43 g dw l -1 , a product concentration of 350 mM was reached within 80 h with a degree of conversion of 95%. The volumetric productivity was 0.58 g l -1 h -1 , using 2.1 kg pressed yeast kg product -1 and 0.52 kg glucose kg product -1 . During the fed-batch biotransformation the reduction rate continuously decreased and reduction ceased after 80 h, due to biocatalyst inactivation after prolonged use at increasing high product concentrations. The continuous decrease in reducing activity led to very high ethyl 3-oxobutanoate levels in the reactor resulting in an increase of the undesired specific ethyl ( R )-3-hydroxybutanoate production rate. Therefore, the enantiomeric excess of the product decreased, from initially 100 to ~75% at 80 h. It is concluded that the design of processes for efficient asymmetric bioreduction cannot solely be based on initial rate kinetics, but require detailed knowledge of the effects on activity and enantioselectivity upon long-term exposure to process conditions.  相似文献   

2.
Baker's-yeast-mediated asymmetric ethyl 3-oxobutanoate reduction using a fed-batch feeding strategy for both the 3-oxo ester and the electron donor, was explored as potential production system for enantiopure ethyl ( S )-3-hydroxybutanoate. The dual feed strategy was based on kinetic and stoichiometric data. One major aspect is the effect of high product concentrations on the progress of the reduction. According to initial rate experiments, product inhibition occurs at concentrations above 600 mM product causing a 10-fold decrease of the initial biomass-specific reduction rate. By using optimized feed rates and a biomass concentration of 43 g dw l &#109 1, a product concentration of 350 mM was reached within 80 h with a degree of conversion of 95%. The volumetric productivity was 0.58 g l &#109 1 h &#109 1, using 2.1 kg pressed yeast kg product &#109 1 and 0.52 kg glucose kg product &#109 1. During the fed-batch biotransformation the reduction rate continuously decreased and reduction ceased after 80 h, due to biocatalyst inactivation after prolonged use at increasing high product concentrations. The continuous decrease in reducing activity led to very high ethyl 3-oxobutanoate levels in the reactor resulting in an increase of the undesired specific ethyl ( R )-3-hydroxybutanoate production rate. Therefore, the enantiomeric excess of the product decreased, from initially 100 to ~75% at 80 h. It is concluded that the design of processes for efficient asymmetric bioreduction cannot solely be based on initial rate kinetics, but require detailed knowledge of the effects on activity and enantioselectivity upon long-term exposure to process conditions.  相似文献   

3.
15N tracer methods and gas chromatography coupled to an electron capture detector were used to investigate dissimilatory reduction of nitrate and nitrite by the rumen microbiota of a fistulated cow. Ammonium was the only 15N-labeled end product of quantitative significance. Only traces of nitrous oxide were detected as a product of nitrate reduction; but in experiments with nitrite, up to 0.3% of the added nitrogen accumulated as nitrous oxide, but it was not further reduced. Furthermore, when 13NO3- was incubated with rumen microbiota virtually no [13N]N2 was produced. Acetylene partially inhibited the reduction of nitrite to ammonium as well as the formation of nitrous oxide. It is suggested that in the rumen ecosystem nitrous oxide is a byproduct of dissimilatory nitrite reduction to ammonium rather than a product of denitrification and that the latter process is absent from the rumen habitat.  相似文献   

4.
The electrochemical properties of the benzotriazine di-N-oxide, tirapazamine (SR4233), and the mono-and zero-N-oxides, SR4317 and SR4330 respectively, have been investigated in dimethylformamide and acetonitrile. The voltammetry of tirapazamine is complicated, with up to 6 reduction steps being identified, depending on the solvent. Both SR4317 and SR4330 show two reduction steps. The first reduction of all three compounds is a reversible or quasi-reversible step, which is assigned to a 1-electron addition. Cyclic voltammetric studies show that the anion radical product is stable, although the tirapazamine 1-electron addition product shows a tendency to participate in a chemical following reaction. Subsequent reduction steps are all highly irreversible in nature. The 2nd electron transfer of SR4317 results in the formation of the free base, SR4330, which is identified voltammetrically. Comparison is made with the voltammetric behaviour of quinoline and quinoline-oxide.  相似文献   

5.
《Free radical research》2013,47(6):319-326
The electrochemical Characteristics of nitrosochloramphenicol have been studied in aqueous buffer systems (pH 7.1) using direct current (d.c.) and differential pulse polarography. cyclic voltammetry and coulometric techniques. Up to 4 charge-transfer steps can be identified. The first reduction step is reversible both chemically and electrochemically. the charge-transfer product showing no tendency to undergo further reaction on the electrochemical time-scale. In contrast, the second reduction step is irreversible, with the product undergoing a fast following reaction to yield a redox-active species which was detected by cyclic voltammetry. From the data and by comparison with related systems. two reduction mechanisms are possible and are discussed.  相似文献   

6.
The electrochemical Characteristics of nitrosochloramphenicol have been studied in aqueous buffer systems (pH 7.1) using direct current (d.c.) and differential pulse polarography. cyclic voltammetry and coulometric techniques. Up to 4 charge-transfer steps can be identified. The first reduction step is reversible both chemically and electrochemically. the charge-transfer product showing no tendency to undergo further reaction on the electrochemical time-scale. In contrast, the second reduction step is irreversible, with the product undergoing a fast following reaction to yield a redox-active species which was detected by cyclic voltammetry. From the data and by comparison with related systems. two reduction mechanisms are possible and are discussed.  相似文献   

7.
The chromophore (purple complex) of bacteriorhodopsin is reduced by sodium borohydride upon illumination to RPhv with a three-peaked absorption band at 360 nm. Treatment of this reduction product with ultraviolet light or acid yields a modified product from which retro-retinyllysine can be obtained by alkaline hydrolysis. No reduction of the 412 nm complex was found. Under specific conditions the purple complex equilibrates with a photochemically active 460 nm form that can be reduced by borohydride in the dark. This reduction product RP460 behaves idential to RPHV. Reconstitution of the purple complex from chromophore-free membrane (apomembrane) and retinal occurs via intermediates. The first (lambdamax 400nm) shows a three-peaked absorption band and is reduced to RP400 without a change of the three-peaked absorption (lambdamax 360 nm). The same product is obtained from apomembrane and retinol. Detergents shift the absorption band to 330 nm in all cases. From the experiments described no participation of retro-retinal structures during the photochemical cycle can be concluded but stereospecific interaction of the retinal moiety with the protein resulting in a specific retinal conformation os omdocated by the spectral changes observed.  相似文献   

8.
An electrochemical model has been used to study the reductive activation of the hypoxic cell cytotoxin tirapazamine (TPZ, 3-amino-1,2,4-benzotriazine-1,4-dioxide). Cyclic voltammetry and controlled potential electrolysis have been used to generate and study the 1-electron reduction product, the assumed biologically active species. Cyclic voltammetry of tirapazamine in dimethylformamide shows a quasi-reversible 1-electron reduction with the product showing a tendency to participate in a following chemical reaction. Controlled potential electrolysis to generate the 1-electron reduction product was unsuccessful due to the formation of a new redox-active species at less negative reduction potentials. However, the cyclic voltammetry of tirapazamine in the presence of E. coli DNA shows a decrease in the lifetime of the radical anion, signifying direct interaction with the DNA. The radical lifetime also decreased in the presence of adenine, thymine and guanine, but increased upon addition of cytosine and ribose. The study shows that cyclic voltammetry is an extremely useful tool for investigating the interaction between bio-reductive drugs and biological target molecules.  相似文献   

9.
An electrochemical model has been used to study the reductive activation of the hypoxic cell cytotoxin tirapazamine (TPZ, 3-amino-1,2,4-benzotriazine-1,4-dioxide). Cyclic voltammetry and controlled potential electrolysis have been used to generate and study the 1-electron reduction product, the assumed biologically active species. Cyclic voltammetry of tirapazamine in dimethylformamide shows a quasi-reversible 1-electron reduction with the product showing a tendency to participate in a following chemical reaction. Controlled potential electrolysis to generate the 1-electron reduction product was unsuccessful due to the formation of a new redox-active species at less negative reduction potentials. However, the cyclic voltammetry of tirapazamine in the presence of E. coli DNA shows a decrease in the lifetime of the radical anion, signifying direct interaction with the DNA. The radical lifetime also decreased in the presence of adenine, thymine and guanine, but increased upon addition of cytosine and ribose. The study shows that cyclic voltammetry is an extremely useful tool for investigating the interaction between bio-reductive drugs and biological target molecules.  相似文献   

10.
The chemical nature of the phosphoryl enzyme linkage of the electrogenic proton-translocating ATPase (ATP phosphohydrolase, EC 3.6.1.3) in the plasma membrane of Neurospora has been identified as a mixed anhydride between phosphate and the beta-carboxyl group of an aspartic acid residue in the polypeptide chain. Incubation of isolated Neurospora plasma membrane vesicles containing 32P-labeled ATPase in buffers of increasing pH followed by analysis of the hydrolysis products yielded a pH versus hydrolysis profile characteristic of an acyl phosphate linkage. Reaction of labeled membranes with hydroxylamine at pH 5.3 also released [32P]i from the ATPase. Amino acid analyses of the Na[3H]BH4 reduction products obtained from membranes containing phosphorylated and dephosphorylated ATPase identified [3H]homoserine, the expected reduction product of beta-aspartyl phosphate, as the only additional tritiated reduction product in the samples from phosphorylated membranes. Tritium was not found in alpha-amino-delta-hydroxyvaleric acid, the reduction product of gamma-glutamyl phosphate, nor in proline, the degradation product of alpha-amino-delta-hydroxyvaleric acid. These results indicate that the phosphorylated intermediate of the Neurospora plasma membrane ATPase is a beta-aspartyl phosphate identical with that already known to exist in the Na+:K+- and Ca2+-translocating ATPases of animal cell origin. A common model for the mechanisms of all 3 ion-translocating ATPases is presented.  相似文献   

11.
Gamunex®-C is a highly purified liquid 10% IgG preparation manufactured by a process that includes caprylate precipitation and incubation, and chromatography steps. In the original process, caprylate precipitation was followed by cloth filtration to remove impurities. The highly porous cloth filter has since been replaced with a tight depth filter. The impact of this process modification on pathogen reduction and product is presented.Virus and prion reduction was determined under set-point conditions using scaled-down models of the manufacturing process, and at or outside operating limits to determine robustness. Product protein compositions before and after the process modification were compared directly using manufacturing data.Filtration through a tight depth filter substantially increased nonenveloped virus reduction, and virus reduction was maintained even when a compromised depth filter was used. In addition, prion reduction was improved by about three logs. The product IgG content, purity, and IgG subclass distribution remained comparable to the original cloth filtration process.The replacement of cloth filtration with depth filtration increased the pathogen safety margin of the manufacturing process without impacting the product composition.  相似文献   

12.
Bacillus cereus CC-1的亚碲酸盐还原特性及产物表征   总被引:1,自引:1,他引:0  
陈光玮  张雷  杨重  周豪 《微生物学通报》2020,47(10):3151-3160
【背景】含Te(IV)的工业废水对于生物体具有潜在的毒性作用,可将Te(IV)还原为Te0的微生物过程具有重要的研究价值。【目的】探索亚硒酸盐还原菌Bacillus cereus CC-1对Te(IV)的还原能力、还原酶位点以及还原产物的特性。【方法】利用前期筛选的亚硒酸盐还原菌Bacillus cereus CC-1还原Te(IV),根据48h内还原率大小确定最适Te(IV)浓度及pH;考察不同阴阳离子对Te(IV)还原率的影响与Te(IV)还原酶位点;利用表征分析确定还原产物的组成、结晶性与形貌。【结果】菌株CC-1能够将Te(IV)还原,Te(IV)初始浓度为0.5 mmol/L,体系pH为7.0时还原率最高。体系中外加阴阳离子对Te(IV)的还原有一定影响,其中磷酸根、硫酸根、醋酸根、钼酸盐对Te(IV)的去除无明显影响;低浓度的硝酸根抑制Te(IV)的去除,随着硝酸根浓度增加,其对Te(IV)的去除的抑制作用减弱;铅离子和铋离子对Te(IV)的还原有抑制作用;铜离子能够提高Te(IV)的去除率。在胞外、细胞膜组分以及细胞内均检测到Te(IV)还原酶的活性...  相似文献   

13.
The mitochondrial derivative of the sperm of the gastropod pulmonate Biomphalaria glabrata was studies to ascertain succinic dehydrogenase localization cytochemically. Two techniques were compared. One technique depends on a tetrazolium salt that yields an osmiophilic formazan upon reduction. The other technique is dependent on the reduction of copper ferricyanide. The effects of several electron transport inhibitors were studied. The reaction product observed in the matrix of the mitochondrial derivative using the former technique is sensitive to rotenone and is believed to be nicotinamide adenine dinucleotide-dependent. The reaction product observed in the intracristal spaces using the copper ferricyanide method is insensitive to rotenone and is believed to cytochemically demonstrate succinic dehydrogenase in this material.  相似文献   

14.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

15.
The mercury resistance (mer) operon of plasmid R100 was cloned onto various plasmid vectors to study the effect of mer gene amplification on the rate of Hg2+ reduction by Escherichia coli cells. The plasmids were maintained at copy numbers ranging from 3 to 140 copies per cell. The overall Hg2+ reduction rate of intact cells increased only 2.4-fold for the 47-fold gene amplification. In contrast, the rate of the cytoplasmic reduction reaction, measured in permeabilized cells, increased linearly with increasing gene copy number, resulting in a 6.8-fold overall amplification. RNA hybridizations indicated that mRNA of the cytoplasmic mercuric reductase (merA gene product) increased 11-fold with the 47-fold gene amplification, while mRNA of the transport protein (merT gene product) increased only 5.4-fold. Radiolabeled proteins produced in maxicells were used to correlate the expression levels of the mer polypeptides with the measured reduction rates. The results indicated that, with increasing gene copy number, there was an approximately 5-fold increase in the merA gene product compared with a 2.5-fold increase in the merT gene product. These data demonstrate a parallel increase of Hg2+ reduction activity and transport protein expression in intact cells with plasmids with different copy numbers. In contrast, the expression level of the mercuric reductase gene underwent higher amplification than that of the transport genes at both the RNA and protein levels as plasmid copy number increased.  相似文献   

16.
The balance equations for carbon, reduction potential, and energy during cell growth and product formation are rederived in a general form. Cells are treated simply as a very complex product, and the Y(ATP) concept is extended to products. Limitations on the theoretical yield are discussed for different product types. Simple aerobic products cannot be energy limited unless the maintenance requirement is large, while complex products cannot be reduction limited. A maximum yield is defined for products much more oxidized than their substrate (carbon limited) because the theoretical yield conditions may violate the energy balance. For reduced complex products the yield on available electrons is related to Y(ATP), the P/O ratio, and the product composition. Narrow bounds are established on the actual yields in simple anaerobic fermentations, and the significance of the yields in the linear growth equation is discussed.  相似文献   

17.
The phenomenon of monoclonal antibody (mAb) interchain disulfide bond reduction during manufacturing processes continues to be a focus of the biotechnology industry due to the potential for loss of product, increased complexity of purification processes, and reduced stability of the drug product. We hypothesized that antibody reduction can be mitigated by controlling the cell culture redox potential and subsequently established a threshold redox potential above which the mAb remained intact and below which there were significant and highly variable amounts of reduced mAb. Using this knowledge, we developed three control schemes to prevent mAb reduction in the bioreactor by controlling the cell culture redox potential via an online redox probe. These control methodologies functioned by increasing the concentration of dissolved oxygen (DO), copper (II) (Cu), or both DO and Cu to maintain the redox potential above the threshold value. Using these methods, we were able to demonstrate successful control of antibody reduction. Importantly, the redox control strategies did not significantly impact the cell growth, viability, mAb production, or product quality attributes including aggregates, C-terminal lysine, high mannose, deamidation, and glycation. Our results demonstrate that controlling the cell culture redox potential is a simple and effective method to prevent mAb reduction.  相似文献   

18.
The azo reductase activity of a cell-free extract of Fusobacterium sp. 2 is characterized using trypan blue as a substrate. Either chemical reduction of this dye with sodium hydrosulfite or reduction by the cell-free extract produces a mutagenic product, o-tolidine. The o-tolidine is mutagenic in the Ames Salmonella/mammalian-microsome mutagenicity test when activated by a rat liver S9 preparation.  相似文献   

19.
利用完整细胞不对称合成R-苯乙醇胺的研究   总被引:2,自引:0,他引:2  
Effects of various factors on asymmetric synthesis of R-phenylaminoethanol from aminoacetophenone by the whole cells of Arachnia sp. P163 producing alcohol dehydrogenase for phenylethanol amine was investigated. It found that, although the reduction was inhibited by the substrate and the product, but it has the very high stereoselectivity. The reduction was normaly carried out with 2% glucose for reproduction of coenzyme in the reaction system without oxygen. The conversion yield and ee value of the product achieved 65% and 100%, respectively.  相似文献   

20.
Several pheromones are known to be involved in mediating the mating behavior of the yellow mealworm beetle, Tenebrio molitor (Coleoptera: Tenebrionidae). The only sex pheromone that has been identified to date in this species is the female-produced male attractant, 4-methylnonanol (MNol). The objective of this study was to develop an in vitro assay for the last biosynthetic step involved in MNol biosynthesis, the reduction of 4-methylnonanoic acid (MNA) to the corresponding pheromone product. In vitro assays were conducted by adding appropriate cofactors and radioactively labelled precursor. Radioactive pheromone product was separated from the radioactive precursor by column chromatography, and quantified through scintillation counting. The conversion of MNA to MNol was observed, and was comparable to that observed in vivo using the same radiolabelled substrate. In both the in vivo and in vitro assays, the (3)H-MNA was also converted to a nonpolar product, tentatively identified as a triacylglyerol (TAG) derivative. The reduction of (3)H-MNA to pheromone proceeded through the coenzyme A intermediate. Mature females reduced significantly more precursor to pheromone than the immature females and the males, both in vivo and in vitro, indicating that the reduction of MNA to MNol is a regulated step involved in pheromone production. Using the in vitro assay reported herein, studies are ongoing in our lab to purify and characterize the enzyme catalyzing the reduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号