首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Patients with neurogenic orthostatic hypotension due to multiple system atrophy (MSA) or pure autonomic failure (PAF) excrete lower amounts of homovanillic acid (HVA) than do normal subjects. There is a highly significant correlation between the rates of excretion of HVA and norepinephrine metabolites. The regression line relating excretion of the dopamine and norepinephrine metabolites suggests that about one third of dopamine formed in noradrenergic neurons is converted to norepinephrine and the remainder metabolized, mainly to HVA. About one fourth of urinary HVA appears to be derived from a source independent of norepinephrine; this source is probably brain dopaminergic neurons.  相似文献   

2.
In a stable state children with Asperger’s and Kanner’s syndromes demonstrate a similar decrease in plasma norepinephrine. In the aggravated state, these changes become more expressed and are characterized by a decrease in plasma tyrosine, norepinephrine, normetanephrine, and by an increase in dopamine and homovanillic acid and a decrease in excretion of norepinephrine and an increase in excretion of homovanillic acid, epinephrine and 3-methoxy-4-hydroxyphenylglycol (MHPG). In the aggravated state children with Kanner’s syndrome were characterized by increased plasma MHPG, decreased excretion of tyrosine and increased expression of normetanephrine. The observed imbalance in dopamine and epinephrine/norepinephrine systems suggests importance of combined analysis of changes in catecholamines and their metabolites as the most informative approach in the study of the effect of autistic disorders.  相似文献   

3.
Thyroid activity of both male and female spontaneous hypertensive (SH) rats was studied by measurements of uptake and rate of release of 131-I, urinary excretion of 131-I, and thyroxine secretion rate (TSR). In addition, thyroid glands were removed at death and weighed. Radioactivity of the thyroid gland of male rats measured at intervals after administration of 131-I revealed a significantly reduced maximal uptake at 21.5 hr after injection and a reduced rate of release. The mean biological half-life of 131-I for the control group was 37.8 plus or minus 3.1 (SE) hr compared to 54.8 plus or minus 7.2 hr for hypertensives (P less than 0.05). Similar results were observed for females in that biological half-life of 131-I was 32.2 plus or minus 1.2 hr compared with 84.1 plus or minus 4.1 hr for hypertensives (P less than 0.01). Urinary excretion of 131-I by hypertensive rats at 24, 48, and 72hr after injection of 131-I did not differ from control in either experiment. Thyroid weight at autopsy was increased significantly above that of normotensive controls. TSR was measured indirectly in a third group of male spontaneously hypertensive and normotensive rats. TSR of control rats was estimated to be 0.97 mug T4/100 g body wt/day and 1.35 mug T4/100 g body wt/day for SH RATS. The results are consistent with the suggestion that the method for measurement of TSR in hypertensive rats gives an artifactually high value because TSH secretion is elevated.  相似文献   

4.
To define the role of the renal eicosanoid system in sustaining renal homeostasis in hypertension, we investigated the alterations in urinary excretions of 6-keto-prostaglandin F1 alpha (6-keto-PGF1 alpha), a stable metabolite of vasodepressor prostacyclin, and thromboxane B2 (TXB2), a stable metabolite of vasoconstrictor TXA2, when norepinephrine was continuously infused for 90 min in hypertensive (n = 13) and normotensive subjects (n = 14). There was no difference in plasma norepinephrine concentration after the infusion between the hypertensive and the normotensive subjects. Moreover, the percent changes in renal vascular resistance elicited by norepinephrine in the hypertensives were equal to those of the normotensive subjects. In the normotensive subjects, the norepinephrine infusion significantly increased urinary 6-keto-PGF1 alpha excretion and decreased urinary excretion of TX, both of which are beneficial for sustaining renal function. In fact, the greater the production of renal 6-keto-PGF1 alpha was, the less the reduction of renal blood flow and urinary sodium excretion was. In the hypertensive subjects, however, these normal responses of the renal eicosanoid system, seen in the normotensives, were abolished; urinary 6-keto-PGF1 alpha was unaltered and thromboxane generation was rather increased. Thus, the renal eicosanoid system dysfunctions in hypertensive subjects when the renal circulation is challenged by norepinephrine. These abnormal responses are likely to cause sodium retention and could contribute, in part, to the hypertensive mechanism in patients with essential hypertension.  相似文献   

5.
The authors studied plasma renin activity (PRA), urinary epinephrine, norepinephrine and dopamine excretion and their mutual relationships in 54 healthy subjects under basal (recumbent) conditions and age-related orthostatic changes in these parameters. The test subjects were divided into six 10-years groups, according to their year of birth (1901-1910 to 1951-1960). In the oldest groups (1901-1910 and 1911-1920), both basal PRA values and norephrine and epinephrine excretion and their postural increase were smaller than in younger subjects. Conversely, urinary dopamine excretion and the dopamine/norepinephrine and epinephrine ratio rose with advancing age. There were no significant differences between the plasma sodium and potassium concentrations in the various groups. Urinary aldosterone excretion was slightly higher in the oldest group than in the others, but was still within the control value limits. The intravenous administration of Inderal reduced both resting PRA values and the orthostatic increase in the youngest age groups, so that their PRA approached the values in older subjects. Higher norepinephrine and epinephrine excretion and the lower dopamine/norepinephrine and epinephrine in young subjects may play a role in their higher PRA, especially in the orthostatic reaction. Diminution of sympathetic activity, with lower norepinephrine and epinephrine excretion and relatively high dopamine excretion, may have a direct bearing on the lower PRA values in older subjects. The diminished capacity of older subjects for catecholamine mobilization and raised renin secretion during an orthostatis stress may be related to the higher incidence of orthostatic forms of hypotension in old age.  相似文献   

6.
Urinary excretion of sodium, potassium and some hormones influencing their transport was investigated before and after i.v. furosemide administration in 10 offsprings of normotensive subjects who had a normal Na(+)-K+ cotransport activity and in 26 normotensive men with a positive family history of essential hypertension. The latter group was divided into two subgroups with regard to the activity of red cell Na(+)-K+ cotransport. The Co[-] subjects with a decreased Na(+)-K+ cotransport activity had lower urinary excretion of sodium and vasodilators (kallikrein, dopamine, PGE2 and prostacyclin) after furosemide administration. The urinary excretion of vasopressor factors (PGF2 alpha, thromboxane) was unchanged as compared with that in the control group. There was a significant correlation between Na(+)-K+ cotransport activity and kallikrein excretion. These results suggest a deficit in the secretion of renal substances with vasodilating or natriuretic effects in Co[-] subjects. This could negatively affect their sodium excretion.  相似文献   

7.
Studies concerning metabolism of catecholamines in mice differing with respect to the degree of pigmentation were based on determination of daily excretion of vanillylmandelic and homovanillic acid and tissue content of epinephrine, norepinephrine, dopamine and their methoxy derivatives. It was found that pigmented mice excrete more homovanillic acid, the metabolite of dopamine, than do albinotic mice. Tissue studies have shown that the brain of albinotic mice contains more dopamine and kidneys more epinephrine, norepinephrine and their methoxy derivatives than the respective organs of the pigmented mice. The probable reasons of differences in the rate of inactivation of catecholamines in albinotic and pigmented mice have been discussed.  相似文献   

8.
We have measured, by a specific radioenzymoassay, the plasma concentration of dopamine (DA) and norepinephrine (NE) and by gas chromatography the urinary excretion of some catecholamine metabolites (HVA, homovanillic acid, DOPAC, dihydroxyphenyl acetic acid; VMA, vanilmandelic acid, and DOPEG, dihydroxyphenyl glycol) in three groups of rats with portal hypertension: cirrhotic rats (CR), rats with progressive portal hypertension (PPH) and rats with progressive hepatic congestion (PHC). The three groups of rats had portal hypertension. PPH and PHC had also intrahepatic hypertension. CR rats showed an increased urinary excretion of NE and DA metabolites with a normal plasma concentration of these catecholamines, suggesting an increased turnover of NE and DA in this experimental model. PPH animals had a high plasma DA concentration with a decreased urinary excretion of catecholamine metabolites. PHC showed high plasma DA and NE levels with normal or increased urinary excretion of its metabolites. These results suggest that an increased neural activity is present in the early stages of experimental cirrhosis in rats and this alteration does not seem directly related to the portal hypertension but perhaps to the intrahepatic hypertension or to the hepatocellular damage.  相似文献   

9.
To elucidate catecholamine (CA) secretory dynamics in neuroblastoma, urinary excretion of CAs and their metabolites was serially measured in 6 patients aged 3 months to 3 years before and during treatment. After tumor extirpation, increased urinary CAs were promptly normalized; the reduction reflected the amount of CA production from the tumor. Urinary dopamine (DA) showed the most prominent reduction, whereas DA content in the tumor was very small, indicating that the DA produced was immediately released from the tumor and metabolized in extra-tumor tissues. In contrast, patients receiving chemotherapy continued to excrete excess DA and homovanillic acid (HVA), which were increased further at recidivation. One patient showed an inverse correlation between DA and norepinephrine (NE) excretion; a decrease in DA was associated with an increase in NE and plasma DA-beta-hydroxylase (DBH) activity. A similar inverse correlation was also noted between NE and vanillylmandelic acid (VMA) or 3-methoxy-4-hydroxyphenylglycol (MHPG) excretion, while HVA and dihydroxyphenylacetic acid (DOPAC) were positively correlated with DA excretion. Urinary HVA and VMA were lineally correlated but in a patient excreting an enormous amount of DA, urinary VMA was markedly suppressed in terms of HVA excretion. Excessive DA induced an increase in renal water output but did not enhance Na and K excretion. These results indicate that endogenous DA overload in neuroblastoma inhibits NE production by suppressing DBH activity as well as by forming VMA and MHPG. This precursor regulation appears to be the characteristic of the CA metabolic pathway.  相似文献   

10.
Small areas of somatosensory, visual and cingulate cortex were microdissected and assayed for their monoamine content by high-performance liquid chromatography with electrochemical detection. No differences were found between the right and the left hemisphere for any area nor for any of the monoamines. The values averaged from left and right hemispheres for the sensory areas were significantly different from the cingulate in the content of norepinephrine, 4-hydroxy-3-methoxyphenylglycol, dopamine, 3,4-dihydroxyphenylacetic acid, homovanillic acid, 5-hydroxyl-tryptophan, serotonin and 5-hydroxyindole-3-acetic acid. The two sensory cortices differed in their levels of norepinephrine, dopamine, 3–4-dihydroxyphenylacetic acid and homovanillic acid. In the latter comparison, the measured amounts were higher in somatosensory than in visual cortex. This biochemical heterogeneity in monoamine distribution may reflect specific innervation patterns for these compounds in these discrete cortical areas and allows differences in content to be related to functional specialization of the cerebral cortex.  相似文献   

11.
The present study was designed to investigate the possible role of dopaminergic mechanisms in contributing to the pathogenesis of hypertension in salt sensitive patients. Eighteen patients with essential hypertension were studied while under a diet ranging from low salt to high salt, which enabled a classification in "salt-sensitive" (SS) and "nonsalt-sensitive" (NSS) groups based on a tentative criteria of a 10% increase of mean blood pressure with high salt diet. The SS patients showed reduced urinary excretion of sodium as compared with that from NSS patients. Urinary norepinephrine excretion in all patients with salt loading was suppressed, but urinary excretion of epinephrine showed a tendency to increase in SS patients after salt loading. Urinary excretion of dopamine increased in NSS patients with salt loading, but did not change in SS patients. To further evaluate the role of dopaminergic mechanisms in salt-sensitive hypertension, metoclopramide, a dopamine antagonist, was injected intravenously to all patients. With salt loading, plasma aldosterone levels increased after injection of metoclopramide in NSS patients, but did not change in SS patients. These results suggest that salt-sensitive hypertension is modulated by dopaminergic activity, which in turn is attenuated in SS patients. Decreased dopaminergic activity induced sodium retention both by a direct effect on the kidney as well as indirectly via relatively increased aldosterone secretion. Both mechanisms would help to increase intravascular volume and blood pressure in salt-sensitive hypertension.  相似文献   

12.
The total 24 hour urinary outputs of the catecholamines norepinephrine (NE), epinephrine (E), dopamine (DA) and the DA metabolite homovanillic acid (HVA) were measured in hypertensive fawn-hooded rats and compared to the ancestral strain of normotensive Wistar rats. The hypertensive fawn-hooded rats demonstrated significantly higher urinary outputs of the catecholamines NE and DA, and of the DA metabolite HVA. Following treatment with the antihypertensive, debrisoquin sulfate, the blood pressure of the fawn-hooded rats decreased until it approached the levels observed in normotensive Wistar rats. By inhibiting sympathetic nervous activity and monoamine oxidase, the debrisoquin treatment significantly decreased the output of DA, NE and HVA but not E. The data suggest the fawn-hooded rat is a model of neurogenic hypertension which is characterized by an increased sympathetic output.  相似文献   

13.
Neural factors appear to play a major role in the pathogenesis of vitiligo. To investigate the possible correlation between vitiligo and peripheral monoaminergic system activity, we used high‐pressure liquid chromatography and electrochemical detector methods to evaluate the basal urine excretion values of catecholamines [norepinephrine (NE), epinephrine and dopamine (DA)], their relative metabolites [3‐methoxy‐4‐hydroxyphenylglycol (MHPG), normetanephrine (NMN), metanephrine (MN), vanilmandelic acid (VMA) and homovanillic acid], as well as 5‐hydroxyindoleacetic acid (5‐HIAA), in 35 healthy subjects and in 70 patients, suffering from non‐segmental vitiligo at different stages of the disease. Levels of NE, DA, NMN, MN, MHPG, VMA and 5‐HIAA were found to be significantly higher in patients than in controls. The patients with progressive vitiligo (n = 56) presented increased urinary excretion values for all parameters (in particular, NE levels) than other patients. Interestingly, in patients at its more recent vitiligo onset (<1 yr), NE values were different to those of subjects affected from 1 to 5 yr and from 6 to 10 yr. This result was confirmed by the significant negative relationship detected between NE excretion values and disease duration. In both vitiligo and control groups, significant correlations were found between monoamines as well as between these monoamines and their metabolites. The increase in catecholamine turnover, mainly occurring at the onset of the disease, is probably due to the stress associated with the appearance of lesions. Moreover, considering that these compounds readily produce toxic free‐radicals and that vitiliginous subjects have a defective free radical defence mechanism, they may also contribute to the disappearance of melanocytes in the early phases of vitiligo.  相似文献   

14.
Neural factors appear to play a major role in the pathogenesis of vitiligo. To investigate the possible correlation between vitiligo and peripheral monoaminergic system activity, we used high-pressure liquid chromatography and electrochemical detector methods to evaluate the basal urine excretion values of catecholamines [norepinephrine (NE), epinephrine and dopamine (DA)], their relative metabolites [3-methoxy-4-hydroxyphenylglycol (MHPG), normetanephrine (NMN), metanephrine (MN), vanilmandelic acid (VMA) and homovanillic acid], as well as 5-hydroxyindoleacetic acid (5-HIAA), in 35 healthy subjects and in 70 patients, suffering from non-segmental vitiligo at different stages of the disease. Levels of NE, DA, NMN, MN, MHPG, VMA and 5-HIAA were found to be significantly higher in patients than in controls. The patients with progressive vitiligo (n = 56) presented increased urinary excretion values for all parameters (in particular, NE levels) than other patients. Interestingly, in patients at its more recent vitiligo onset (<1 yr), NE values were different to those of subjects affected from 1 to 5 yr and from 6 to 10 yr. This result was confirmed by the significant negative relationship detected between NE excretion values and disease duration. In both vitiligo and control groups, significant correlations were found between monoamines as well as between these monoamines and their metabolites. The increase in catecholamine turnover, mainly occurring at the onset of the disease, is probably due to the stress associated with the appearance of lesions. Moreover, considering that these compounds readily produce toxic free-radicals and that vitiliginous subjects have a defective free radical defence mechanism, they may also contribute to the disappearance of melanocytes in the early phases of vitiligo.  相似文献   

15.
Arterial pressure was continuously recorded for 24--48 h in 3 normotensive subjects and in 60 hypertensive patients. The greatest variations occurred in those with labile, mild or moderate hypertension compared to those with severe hypertension or normal blood pressure. Atenolol (100-200 mg) administered once or twice daily produced a significant reduction of arterial pressure and a smaller response to the cold pressor test, hand grip and step test in patients with established hypertension, but little change in those with labile hypertension. The evening dose was not followed by a decrease in pressure greater than that observed without treatment, but determined a smaller rise on awaking.  相似文献   

16.
Summary. Amino acid and biogenic amine changes were investigated in nephrectomized mice ten days postsurgery. Uremic mice exhibited changes in amino acid concentrations in plasma, urine and brain. Particularly plasma methionine, citrulline and arginine levels were significantly enhanced in nephrectomized mice compared to controls whereas serine was decreased. Urinary excretion of methionine, citrulline and alanine was higher in nephrectomized mice compared to controls whereas many amino acids were increased in brain of nephrectomized mice. Brain and urinary amino acid changes were more pronounced in the 75% than in the 50% nephrectomized mice. Brain norepinephrine and dopamine and its metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid were significantly increased whereas serotonin was decreased comparing the 75% nephrectomized mice to the sham-operated mice. This study demonstrates that at very early stages of renal insufficiency, specific amino acid and biogenic amine changes occur in plasma, urine and brain. These alterations might depend qualitatively and quantitatively on the degree of functional renal mass reduction. Received April 5, 1999  相似文献   

17.
The one-kidney, one-clip model of rat hypertension was found to have an increased natriuresis following chronic infusion of atrial natriuretic factor (ANF). We have now found that this natriuretic effect of ANF is associated with a suppression of the initially elevated urinary excretion of norepinephrine and epinephrine and increase of the excretion of the main dopamine metabolite-dihydroxyphenylacetic acid as well as of the urinary dopamine to norepinephrine ratio. These data are compatible with the hypothesis that ANF suppresses the increased sympathetic activity in this model of hypertension and this action combined with opposite changes of dopamine may contribute to the natriuretic effect of ANF.  相似文献   

18.
To investigate the source of urinary Met-enkephalin-like immunoreactivity (MELI), 24-h urinary excretion of MELI and catecholamines (CAs) were examined in normal subjects and patients with tuberculous Addison's disease. MELI was present in urine and 24-h urinary excretion of MELI averaged 813.8 +/- 446.9 ng/day in normal subjects (N = 33, Mean +/- SD). 24-h urinary excretion of MELI in normal subjects significantly showed positive correlation with 24-h urinary epinephrine (E) (R = 0.392, P less than 0.05) but no correlation with that of norepinephrine (NE) or dopamine (DA). In two patients with tuberculous Addison's disease, 24-h urinary excretion of MELI and that of E were significantly lower than those of normal subjects. These results indicate that the main source of urinary MELI may be adrenal medulla.  相似文献   

19.
This study on the role of the sympathetic nervous system in the development of hypertension involves the measurement of dopamine and norepinephrine accumulation in various tissues of the hypertensive and random-bred normotensive strains of mice at basal levels, and following a pargyline-L-dopa treatment. Under such a treatment, designed to suppress the homeostatic action of monoamine oxidase and to better expose the relationship between dopamine and norepinephrine, the brain and heart of the hypertensive mice accumulated more dopamine than the normotensive mice. There was a significantly lower norepinephrine accumulation in the heart of the hypertensive mice in spite of comparable dopamine-beta-hydroxylase activity in this tissue between the two strains of mice. Under the pargyline-L-dopa treatment, the brain and heart of the older mice in both hypertensive and normotensive strains accumulated significantly (p less than 0.05) more dopamine than those of their younger counterparts, while their norepinephrine accumulation remained unchanged. The results demonstrated different patterns of response of dopamine and norepinephrine in the development of hypertension.  相似文献   

20.
Metabolites of dopamine and norepinephrine measured in the plasma have long been associated with symptomatic severity and response to treatment in schizophrenic, bipolar and other psychiatric patients. Plasma concentrations of catecholamine metabolites are genetically regulated. The genes encoding enzymes that are involved in the synthesis and degradation of these monoamines are candidate targets for this genetic regulation. We have studied the relationship between the Val158Met polymorphism in catechol O-methyltransferase gene, variable tandem repeat polymorphisms in the monoamine oxidase A gene promoter, and plasma concentrations of 3-methoxy-4-hydroxyphenylglycol, 3,4-dihydroxyphenylacetic acid and homovanillic acid in healthy control subjects as well as in untreated schizophrenic and bipolar patients. We found that the Val158Met substitution in catechol O-methyltransferase gene influences the plasma concentrations of homovanillic and 3,4-dihydroxyphenylacetic acids. Although higher concentrations of plasma homovanillic acid were found in the high-activity ValVal genotype, this mutation did not affect the plasma concentration of 3-methoxy-4-hydroxyphenylglycol. 3,4-dihydroxyphenylacetic acid concentrations were higher in the low-activity MetMet genotype. Interestingly, plasma values 3-methoxy-4-hydroxyphenylglycol were greater in schizophrenic patients and in bipolar patients than in healthy controls. Our results are compatible with the previously reported effect of the Val158Met polymorphism on catechol O-methyltransferase enzymatic activity. Thus, our results suggest that this polymorphism, alone or associated with other polymorphisms, could have an important role in the genetic control of monoamine concentration and its metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号