首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Archaeological evidence supports the inhabitation of the Lake Baikal region since the Paleolithic. Both metric and nonmetric osteological studies suggest that Neolithic Cis-Baikal populations are the ancestors of contemporary inhabitants of the region. To date, ancient DNA data have not been used to corroborate this biological continuity hypothesis. This study presents a temporal snapshot of the Cis-Baikal Neolithic by examining mtDNA diversity in two cemetery populations situated on the Angara River downstream of Lake Baikal. The 800 years separating the use of the two cemeteries is thought to represent a biocultural hiatus in the Cis-Baikal region, one that ended when a new group migrated into the area. To assess the likelihood that genetic continuity exists between these two Neolithic groups, we examined both mtDNA coding region and hypervariable region I (HVI) polymorphisms from skeletal remains excavated from both cemeteries (Lokomotiv and Ust'-Ida). The mtDNA haplogroup distributions of the two cemetery populations differ significantly, suggesting that they were biologically distinct groups. When the biological distance between these Neolithic groups is compared with modern Siberian and other East Eurasian groups, the posthiatus group (Serovo-Glazkovo) generally aligns with contemporary Siberians, while the prehiatus (Kitoi) individuals are significantly different from all but modern Kets and Shorians living in the Yenisey and Ob River basins to the west of Lake Baikal. These results suggest that the Lake Baikal region experienced a significant depopulation event during the sixth millennium BP, and was reoccupied by a new immigrant population some 800 years later.  相似文献   

2.
The Biodiversity of Actinomycetes in Lake Baikal   总被引:1,自引:0,他引:1  
Terkina  I. A.  Drukker  V. V.  Parfenova  V. V.  Kostornova  T. Ya. 《Microbiology》2002,71(3):346-349
The taxonomic analysis of 107 actinomycete strains isolated from the bottom sediments and water of Lake Baikal showed that most of the water isolates belong to the genus Streptomyces and most of the sediment isolates belong to the genus Micromonospora. In the sediments, the number of actinomycetes increased with depth (down to 200 m). Eight Streptomyces isolates were identified to a species level.  相似文献   

3.
To diagnose the nutritional status of phytoplankton in Lake Baikal, surveys for the determination of concentrations of particulate carbon (PC), nitrogen (PN) and phosphorus (PP) and their ratios were conducted at six stations in March, June, August and October 1999. The concentrations of PC and PN were lower than, and those of PP were similar to, those in another mesotrophic lake except at the station near the mouth of the largest input river, Selenga River, of Lake Baikal. The PC : PN : PP ratio was 102 : 13 : 1, considerably close to the Redfield ratio. The ratio was constant against spatiotemporal changes. These indicate that phytoplankton in Lake Baikal were exposed to no deficiency in nitrogen nor phosphorus. From a viewpoint of the nutritional status of phytoplankton, Lake Baikal might be viewed as an ocean rather than as a lake.  相似文献   

4.
From the water column of Lake Baikal, several strains of prosthecate bacteria belonging to the genera Caulobacter and Brevundimonas were isolated. In this article, the methods applied for their isolation and cell number determination are described; the occurrence frequency and spatial distribution of these microorganisms in the lake are demonstrated. Characterization of the species composition of cultivable and uncultivable prosthecate bacteria was carried out using the methods of traditional and molecular microbiology, respectively. A comparative phylogenetic analysis of the DNA sequences of uncultivable bacteria, which showed homology to the members of the alpha subclass of proteobacteria, was carried out. It was demonstrated that the lake water column is inhabited by uncultivable alpha-proteobacteria of uncertain phylogenetic affinity, in addition to representatives of the species Caulobacter vibrioides and C. leidyi, which were detected by traditional microbiological methods.  相似文献   

5.
红嘴鸥在贝加尔湖的分布和繁殖   总被引:1,自引:1,他引:0  
王紫江  赵雪冰  杨明 《四川动物》2007,26(3):552-554
在对贝加尔湖地区红嘴鸥Larus ridibundus的数量分布及繁殖习性的现场考察中发现,贝加尔湖及其附近广阔的湿地是红嘴鸥繁殖的理想场所,每年至少有50000对红嘴鸥在当地繁殖;红嘴鸥为半早成鸟;红嘴鸥的筑巢、产卵、孵化是在一定的时间范围内先后不一进行的。这次考察为进一步揭示红嘴鸥的繁殖生态和促进对红嘴鸥及其鸟类的保护提供了一些有益的基础资料。  相似文献   

6.
An investigation of the microbial community of Lake Baikal by the methods of general and molecular microbiology showed that culturable bacterial strains are represented by various known genera. The lake water contains a great number of bacterial morphotypes, as revealed by electron microscopy, and a great diversity of nonculturable microorganisms belonging to different phylogenetic groups, as revealed by 16S rRNA gene fragment sequencing. The inference is made that the microbial community of Lake Baikal contains not only known species but also new bacterial species that are possibly endemic to the lake.  相似文献   

7.
A three-dimensional general circulation model has been developed to investigate mixing processes in Lake Baikal, Siberia. Emphasis is placed on the 4–5-month period when the lake is completely ice-covered, a time of particular importance to the re-population of the lake by diatoms. The model represents the top 250 m and includes a new mixing scheme developed specifically for the investigation of under-ice flows. The effects of spatial patterns of snow and ice transparency on circulation and temperature are investigated. In general, temperature profiles provide an indication of the extent and depth of mixing and are highly sensitive to the presence of snow and to the transparency of ice. Generated profiles agree well with in situ measurements, which are difficult to obtain during this period. The model is shown to be particularly successful in simulating mixing processes in Lake Baikal. The surface heat fluxes that are required for a model of this type were estimated using satellite data, which provide complete coverage of the lake within one image. An increase in albedo values of 20% has no significant impact on the development of the temperature profile. Finally, density driven currents generated in the model were investigated. The magnitudes of the model currents compared to observations suggest that the background flow under ice in the lake may be density driven.  相似文献   

8.
The phylogenetic relationship of the freshwater sponges (Porifera) in Lake Baikal is not well understood. A polyphyletic and/or monophyletic origin have been proposed. The (endemic) Baikalian sponges have been subdivided into two families: endemic Lubomirskiidae and cosmopolitan Spongillidae. In the present study, two new approaches have been made to resolve the phylogenetic relationship of Baikalian sponges; analysis of (1) nucleotide sequences from one mitochondrial gene, the cytochrome oxidase subunit I (COI) and of (2) one selected intron from the tubulin gene. Specimens from the following endemic Baikalian sponge species have been studied; Lubomirskia baicalensis , Baikalospongia intermedia, Baikalospongia recta , Baikalospongia bacillifera and Swartschewskia papyracea . They are all grouped to the family of Lubomirskiidae. Sequence comparisons were performed with the ubiquitously distributed freshwater sponge Spongilla lacustris (family Spongillidae) as well as with one marine sponge, Suberites domuncula . A sequence comparison * * The sequences reported here are being deposited in the EMBL data base. of the mitochondrial COI gene revealed a monophyletic grouping of the endemic Baikalian sponges with S. lacustris as the most related species to the common ancestor. The sequences of the COI gene from B. recta , B. intermedia , B. bacillifera and L. baicalensis were found to be identical and separated from those of S. lacustris and S. papyracea . In a second approach, the exon/intron sequences framing the intron‐2 of the sponge tubulin gene were chosen for the phylogenetic analysis. The intron sequences were aligned and used for construction of a phylogenetic tree. This analysis revealed again a monophyletic grouping with S. lacustris as the closest related species to the common ancestor. It is concluded that the Baikalian sponges, which have been studied here, are of monophyletic origin. Furthermore, the data suggest that the endemic species S. papyracea is the phylogenetically oldest, extant, endemic Baikalian sponge species.  相似文献   

9.
  • 1 Growth rates of two dominant Lake Baikal phytoplankton, the winter diatom Aulacoseira baicalensis and the summer cyanobacterium Synechocystis limnetica, were measured in the laboratory under varied temperature and light regimes to determine the potential role of these abiotic factors in seasonal species succession in the lake.
  • 2 Aulacoseira baicalensis grew best at low temperature and not at all above 8 °C. Its maximum instantaneous growth rate was 0.15 d‐1 recorded at 2–3 °C. Cells grew faster as temperature decreased, apparently in contrast to conventional Q10‐based temperature‐growth relationships.
  • 3 The picoplankter Synechocystis limnetica did not grow at 2–3 or 5–6 °C, but grew at a rate of 0.24 d‐1 at the highest incubation temperature of 17 °C. Maximum growth rate was 0.35 d‐1 at 8 °C.
  • 4 Saturation irradiances (Ik) for growth of Aulacoseira baicalensis and Synechocystis limnetica were near pre‐acclimation values of 40 µmol m‐2 s‐1. At temperatures conducive to growth, both phytoplankters grew at all irradiances tested, except for A. baicalensis which would not grow at values above 300 µmol m‐2 s‐1 at 8 °C.
  • 5 We conclude that temperature is a major driving force for the seasonal succession of species in Lake Baikal. Other factors, including vertical mixing of the water column and grazing by zooplankton, may also play important roles.
  相似文献   

10.
Chroococcoid cyanobacteria, (mean size = 0.79 μm, likely Synchetocystis limnetica Popovsk) and total eubacteria (mean size = 0.33 μm), from Lake Baikal, USSR, were enumerated using epifluorescence microscopy and sized with image analysis. Bacterial densities ranged from 0.44 · 106 cells ml−1 at 250 m to 2.3 · 106 cells ml−1 at the surface. Mean eubacterial abundance was 1.3 · 106 cells ml−1. Cyanobacterial densities were more variable, ranging from 0.42 · 104 cells ml−1 at 250 m to 9.8 · 104 cells ml−1 at the surface, with a mean abundance of 2.7 · 104 cells ml−1. The cyanobacteria, in particular, occurred in clusters resembling “marine snow”. Our results indicate that Lake Baikal picoplankton size and density are similar to other large lakes but may have a more diverse community structure than in other large oligotrophic lakes.  相似文献   

11.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

12.
Aerobic methanotrophs from the coastal thermal springs of Lake Baikal   总被引:1,自引:0,他引:1  
The number, activity, and diversity of aerobic methanotrophic bacteria in the sediments of three coastal thermal springs of Lake Baikal were analyzed. The average number of methanotrophs was 103–104 cells per 1 cm3 of sediment. The highest number of methanotrophs (108 cells/cm3 of silt) and the highest potential rate of methane uptake [7.7 nmol CH4/(cm3 day)] were revealed in sediments from the Sukhaya thermal spring. The methods of molecular ecology (DGGE, FISH, analysis of pmoA gene fragments) showed the predominance in most enrichment cultures of methanotrophs of type II, i.e., of the genera Methylocystis and Methylosinus. In only one enrichment culture (from the Sukhaya thermal spring), a type I methanotroph was revealed; its similarity to Methylococcus capsulatus Bath did not exceed 80%. These results demonstrate a widespread occurrence and high activity of the aerobic methanotrophic community in the coastal thermal springs of Lake Baikal.  相似文献   

13.
In the course of a preliminary sampling program, oligochaetes were collected along two transects in soft sediments in Lake Baikal. The number of oligochaetes present in the samples was counted, without distinguishing between species. The results suggest an exponential decrease in number of individuals (N) relative to depth (11,165 N m–2 at 21 m, 265 N m–2 at 1200 m). Most oligochaetes were found in the top 7 cm of sediment. The orange colour of the sediments suggests a high oxygen availability, even at the greatest water depths.
Résumé Au cours d'un programme d'échantillonnage préliminaire, les oligochètes du lac Baïkal ont été récoltés dans le sédiment mou prélevé le long de deux transects. Les oligochètes présents dans les échantillons ont simplement été dénombrés, sans identification déspèces. Les résultats suggèrent une diminution exponentielle du nombre d'individus en fonction de la profondeur du lac (11165 N m–2 à 21 m, 265 N m–2 à 1200 m). La plupart des oligochètes ont été trouvés dans les 7 premeirs cm de la couche supérieure du sédiment. La couleur orangée du sédiment suggère une grande disponibilité en oxygène, même aux profondeurs les plus grandes.
  相似文献   

14.
Dagurova  O. P.  Namsaraev  B. B.  Kozyreva  L. P.  Zemskaya  T. I.  Dulov  L. E. 《Microbiology》2004,73(2):202-210
The activity of methanogenic and methanotrophic bacteria was evaluated in bottom sediments of Lake Baikal. Methane concentration in Baikal bottom sediments varied from 0.0053 to 81.7 ml/dm3. Bacterial methane was produced at rates of 0.0004–534.7 l CH4/(dm3 day) and oxidized at rates of 0.005–1180 l CH4/(dm3 day). Peak methane production and oxidation were observed in Frolikha Bay near a methane vent. Methane was emitted into water at rates of 49.2–4340 l CH4/(m2 day). Rates of bacterial methane oxidation in near-bottom water layers ranged from 0.002 to 1.78 l/(l day). Methanogens and methanotrophs were found to play an important role in the carbon cycle through all layers of sediments, particularly in the areas of methane vent and gas-hydrate occurrence.  相似文献   

15.
Distribution of dissolved organic carbon in Lake Baikal and its watershed   总被引:2,自引:0,他引:2  
 Concentrations of dissolved organic carbon (DOC) in Lake Baikal ranged from 90 to 110 μM C, considerably higher than those in oceanic environments. The DOC concentrations in the epilimnion were higher than those in the hypolimnion. Since particulate organic carbon (POC) concentrations in the pelagic waters of Lake Baikal were <10–40 μM C in the epilimnion and 2–5 μM C in the hypolimnion, DOC constitutes a major component of the organic carbon pool in Lake Baikal, especially in the deep layers. The DOC concentrations downstream of the Barguzin and Selenga Rivers were quite high (400–500 μM C). Probably because of the high concentrations of DOC in these rivers, the DOC levels in Barguzin Bay and offshore at the mouth of the Selenga River were higher than those in the pelagic regions of the central and south basins of Lake Baikal. The relationship between DOC and electric conductivity revealed the transport of DOC from rivers to the pelagic area in Lake Baikal. The spatial distribution of DOC suggested that a major part of DOC in the lake was allochthonous (land-derived). Received: July 26, 2002 / Accepted: September 16, 2002 Present address:Research Institute for Humanity and Nature, 335 Takashima-cho, Marutamachi Kawaramachi, Kamigyo-ku, Kyoto 602-0878, Japan Tel. +81-75-229-6167; Fax +81-75-229-6150 e-mail: yos@chikyu.ac.jp Acknowldgments The authors wish to thank Director Prof. M. Grachev and Dr. O. Timoshkin of the Limnological Institute, Siberian Branch, Academy of Science, Russia, for arranging the cruise on Lake Baikal. We are also indebted to Drs. V. Sinyukovich, I. Khanaev, and A. Zhdanov for their kind assistance during the expeditions. We wish to thank Ms. Y. Ito for measuring the DOC concentrations. This work was supported and financed by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan (No. 09041159) and for Scientific Research of Priority Area B (No. 11213101) and by the International Geosphere-Biosphere Programme (IGBP) at Nagoya University. Correspondence to:T. Yoshioka  相似文献   

16.
Martin  Patrick  Granina  Liba  Martens  Koen  Goddeeris  Boudewijn 《Hydrobiologia》1998,367(1-3):163-174
Oxygen concentration profiles have been measured, by means of with microelectrodes in sediments of Lake Baikal and Lake Malawi, along transects allowing to give a survey of two major ancient Rift lakes: Lake Baikal (Eastern Siberia) and Lake Malawi (East Africa), along depth transects in the constitutive basins of the lakes and/or of relevant depths with regard to oxygen (including including the deepest point, 1680 m, in Lake Baikal). Sediment oxygen penetration depths (SOPs) display very different patterns, depending on the lake in the two lakes. In Lake Baikal, SOPs are variable, show no significant relationship with bathymetric depth and are surprisingly deep on Akademichesky ridge (> 50.0 mm), emphasizing the distinctive feature of this region in the lake. While the Selenga river is an important source of eutrophication, the similarity of SOP-values in the Selenga shallow with those of most other sites suggests either a dilution of organic material by allochthonous matter, or a strong south-to-north transport of particles. In Lake Malawi, available oxygen is restricted to a maximum of three millimetres of the sediment, and there is a negative relationship with bathymetric depth, as a result of a steady decline of oxygen concentration with depth through the water column. Amongst the few parameters known to affect SOPs, the oxygen consumption by the sediment seems the most significant in both lakes. SOP-values furthermore confirm differences in the trophic status of Baikal and Malawi, respectively. The importance of oxygen as a factor likely to create ecological segregation for benthic organisms is discussed. Lake Malawi offers possibilities of bathymetric segregation but no vertical segregation in the sediment. In contrast, no bathymetric segregation related to oxygen is possible in Lake Baikal, but vertical segregation in the sediment is very likely. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Stock structure of Lake Baikal omul as determined by whole-body morphology   总被引:3,自引:0,他引:3  
In Lake Baikal, three morphotypes of omul Coregonus autumnalis migratorius are recognized; the littoral, pelagic, and deep-water forms. Morphotype assignment is difficult, and similar to that encountered in pelagic and deep-water coregonines in the Laurentian Great Lakes. Principal component analysis revealed separation of all three morphotypes based on caudal peduncle length and depth, length and depth of the body between the dorsal and anal fin, and distance between the pectoral and the pelvic fins. Strong negative loadings were associated with head measurements. Omul of the same morphotype captured at different locations were classified to location of capture using step-wise discriminant function analysis. Jackknife correct classifications ranged from 43 to 78% for littoral omul from five locations, and 45–86% for pelagic omul from four locations. Patterns of location misclassification of littoral omul suggested that the sub-population structure, hence stock affinity, may be influenced by movements and intermixing of individuals among areas that are joined bathymetrically. Pelagic omul were more distinguishable by site and may support a previous hypothesis of a spawning-based rather than a foraging-based sub-population structure. Omul morphotypes may reflect adaptations to both ecological and local environmental conditions, and may have a genetic basis.  相似文献   

18.
Hannaea baicalensis is a benthic pennate diatom that predominantly grows at depths of less than a metre attached to rocks and filamentous algae in Lake Baikal, Russia. This narrow zone at the edge of the lake is subject to frequent wave action and lake level fluctuations, which combine with other factors to affect seasonal abundance. During ice cover from January to May in 2008, when lake levels decreased from 42 to 14 cm above datum, H. baicalensis cell abundance remained low (0.39 × 106 cells cm–2). The main period of net cell increase occurred in autumn, when there was a period of stable lake level (±10 cm changes in water depth) that coincided with the return of nutrients during autumn overturn. Cell abundance reached 1.52 × 106 cells cm–2 on 31 October. Alongside the changes in abundance, cyclic size changes in cell apical lengths were found (40 to 144 µm), which were associated with timing of the length of the life cycle. Size decline occurred in both spring and autumn, with an average decrease in apical length of 36 µm per year. It took two years for the mean apical length of a single cohort to decrease from 128 µm to 56 µm, which was then below the threshold (< 65 µm) for initiation of size regeneration.  相似文献   

19.
The abundance, growth, and grazing loss rates of picophytoplankton were investigated in August 2002 in Barguzin Bay, Lake Baikal. Water samples for incubation were taken once at a near-shore station and twice at an offshore station. Contributions of picophytoplankton to total phytoplankton were high (56.9–83.9%) at the offshore station and low (5.8–6.8%) at the near-shore station. The picophytoplankton community in the offshore station comprised mainly phycoerythrin (PE)-rich cyanobacteria, with eukaryotic picophytoplankton being less abundant. In contrast, as well as PE-rich cyanobacteria and eukaryotic picophytoplankton, phycocyanin (PC)-rich cyanobacteria were found in the near-shore station. At the offshore station, growth and grazing loss rates on 25 August were 0.56 and 0.43 day−1, respectively, and on 29 August, 0.69 and 0.83 day−1, respectively. At the near-shore station, growth and grazing loss rates were 1.61 and 0.70 day−1, respectively. These results show that there is a difference in the abundance, composition, and ecological role in the microbial food web of picophytoplankton between the near-shore and the offshore areas in Barguzin Bay.  相似文献   

20.
Batrachocottus baicalensis , endemic to Lake Baikal, Russia, has wider lateral line canals than Paracottus kneri , which also inhabits Siberian streams. In quiet water B. baicalensis responded to amphipods at a greater distance than did P. kneri. Batrachocottus baicalensis also moves less often from search positions than does P. kneri . Fish responded to faster moving prey at a greater distance than slower prey. They also responded to a greater distance to prey moving more parallel to the fish's body surface. In an artificial stream B. baicalensis responded only to prey that touched them whilst P. kneri responded to both swimming prey and prey that contacted them. It is argued that B. baicalensis is primarily an ambush predator that is a habitat specialist and P. kneri is a cruising predator that visits many habitats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号