首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ovarian follicular granulosa cells surround and nurture oocytes, and produce sex steroid hormones. It is believed that during development the ovarian surface epithelial cells penetrate into the ovary and develop into granulosa cells when associating with oogonia to form follicles. Using bovine fetal ovaries (n = 80) we identified a novel cell type, termed GREL for Gonadal Ridge Epithelial-Like. Using 26 markers for GREL and other cells and extracellular matrix we conducted immunohistochemistry and electron microscopy and chronologically tracked all somatic cell types during development. Before 70 days of gestation the gonadal ridge/ovarian primordium is formed by proliferation of GREL cells at the surface epithelium of the mesonephros. Primordial germ cells (PGCs) migrate into the ovarian primordium. After 70 days, stroma from the underlying mesonephros begins to penetrate the primordium, partitioning the developing ovary into irregularly-shaped ovigerous cords composed of GREL cells and PGCs/oogonia. Importantly we identified that the cords are always separated from the stroma by a basal lamina. Around 130 days of gestation the stroma expands laterally below the outermost layers of GREL cells forming a sub-epithelial basal lamina and establishing an epithelial-stromal interface. It is at this stage that a mature surface epithelium develops from the GREL cells on the surface of the ovary primordium. Expansion of the stroma continues to partition the ovigerous cords into smaller groups of cells eventually forming follicles containing an oogonium/oocyte surrounded by GREL cells, which become granulosa cells, all enclosed by a basal lamina. Thus in contrast to the prevailing theory, the ovarian surface epithelial cells do not penetrate into the ovary to form the granulosa cells of follicles, instead ovarian surface epithelial cells and granulosa cells have a common precursor, the GREL cell.  相似文献   

2.
3.
As an adaptation to their endoparasitic lifestyle, Acanthocephala (Palaeacanthocephala, Eoacanthocephala, Polyacanthocephala, Archiacanthocephala) have evolved a highly specialized reproductive system. Most of our present knowledge of the efferent duct system of the female is based on palaeacanthocephalan and archiacanthocephalan representatives. In order to provide a basis for further elucidating the phylogenetic relationships within the Acanthocephala, we herein describe ultrastructure and overall organization of the ligament sac and efferent duct system in females of Paratenuisentis ambiguus (Eoacanthocephala, Neoechinorhynchida). Only one ligament sac was found. The uterine bell consists of two contractile binucleate syncytia (bell wall syncytium, lateral pocket syncytium), two pairs of contractile cells (lappet cells, uterine bell retractors) and three pairs of noncontractile cells (median cells). The contractile uterus bears four nuclei. The vagina is composed of a syncytial epithelium (four nuclei) and two binucleate sphincters. A comparison of the present findings with literature data leads to the following conclusions: except for the uterine bell retractors, the uterine bell components found in P. ambiguus can be assumed to be autapomorphies for the Acanthocephala. The sheathing syncytium and median dorsal cell belong to the basal pattern (sensu ground pattern) of a palaeacanthocephalan subclade termed the Echinorhynchus‐group in the present study. The median oviduct syncytium and paired uterine bell retractors can be assumed to be basal pattern characteristics of the Archiacanthocephala and Neoechinorhynchida, respectively. The study includes a tabular survey of terminological synonyms used in the literature.  相似文献   

4.
Multinucleate cells play an important role in higher plants, especially during reproduction; however, the configurations of their cytoskeletons, which are formed as a result of mitosis without cytokinesis, have mainly been studied in coenocytes. Previous authors have proposed that in spite of their developmental origin (cell fusion or mitosis without cytokinesis), in multinucleate plant cells, radiating microtubules determine the regular spacing of individual nuclei. However, with the exception of specific syncytia induced by parasitic nematodes, there is no information about the microtubular cytoskeleton in plant heterokaryotic syncytia, i.e. when the nuclei of fused cells come from different cell pools. In this paper, we describe the arrangement of microtubules in the endosperm and special endosperm–placenta syncytia in two Utricularia species. These syncytia arise from different progenitor cells, i.e. cells of the maternal sporophytic nutritive tissue and the micropylar endosperm haustorium (both maternal and paternal genetic material). The development of the endosperm in the two species studied was very similar. We describe microtubule configurations in the three functional endosperm domains: the micropylar syncytium, the endosperm proper and the chalazal haustorium. In contrast to plant syncytia that are induced by parasitic nematodes, the syncytia of Utricularia had an extensive microtubular network. Within each syncytium, two giant nuclei, coming from endosperm cells, were surrounded by a three-dimensional cage of microtubules, which formed a huge cytoplasmic domain. At the periphery of the syncytium, where new protoplasts of the nutritive cells join the syncytium, the microtubules formed a network which surrounded small nuclei from nutritive tissue cells and were also distributed through the cytoplasm. Thus, in the Utricularia syncytium, there were different sized cytoplasmic domains, whose architecture depended on the source and size of the nuclei. The endosperm proper was isolated from maternal (ovule) tissues by a cuticle layer, so the syncytium and chalazal haustorium were the only way for nutrients to be transported from the maternal tissue towards the developing embryo.  相似文献   

5.
Oogonial proliferation in fishes is an essential reproductive strategy to generate new ovarian follicles and is the basis for unlimited oogenesis. The reproductive cycle in viviparous teleosts, besides oogenesis, involves development of embryos inside the ovary, that is, intraovarian gestation. Oogonia are located in the germinal epithelium of the ovary. The germinal epithelium is the surface of ovarian lamellae and, therefore, borders the ovarian lumen. However, activity and seasonality of the germinal epithelium have not been described in any viviparous teleost species regarding oogonial proliferation and folliculogenesis. The goal of this study is to identify the histological features of oogonial proliferation and folliculogenesis during the reproductive cycle of the viviparous goodeid Ilyodon whitei. Ovaries during nongestation and early and late gestation were analyzed. Oogonial proliferation and folliculogenesis in I. whitei, where intraovarian gestation follows the maturation and fertilization of oocytes, do not correspond to the late oogenesis, as was observed in oviparous species, but correspond to late gestation. This observation offers an example of ovarian physiology correlated with viviparous reproduction and provides elements for understanding the regulation of the initiation of processes that ultimately result in the origin of the next generation. These processes include oogonia proliferation and development of the next batch of germ cells into the complex process of intraovarian gestation. J. Morphol. 275:1004–1015, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

6.
The study was aimed at understanding the process of reproduction and the changes happening in the ovary of Portunus pelagicus during maturation, which would be useful for its broodstock development for hatchery purposes. For that, tissue samples from different regions of the ovary at various stages of maturation were subjected to light and electron microscopy, and based on the changes revealed and the differences in ovarian morphology, the ovary was divided into five stages such as immature (previtellogenic oocytes), early maturing (early vitellogenic oocytes), late maturing (late vitellogenic oocytes), mature (vitellogenic oocytes), and spent (resorbing oocytes). The ovarian wall comprised of an outermost thin pavement epithelium, a middle layer of connective tissue, and an innermost layer of germinal epithelium. The oocytes matured as they moved from the centrally placed germinal zone toward the ovarian wall. The peripheral arrangement of nucleolar materials and the high incidence of cell organelles during the initial stages indicated vitellogenesis I. Movement of follicle cells toward oocytes in the early maturing stage and low incidence of mitochondria and endoplasmic reticulum in the ooplasm during late vitellogenic stage marked the commencement and end of vitellogenesis II, respectively. Yolk granules at various stages of development were seen in the ooplasm from late vitellogenic stage onwards. The spent ovary had an area with resorbing oocytes and empty follicle cells denoting the end of one reproductive cycle and another area with oogonial cells and previtellogenic oocytes indicating the beginning of the next.  相似文献   

7.
The F-actin cytoskeleton in syncytia from non-clonal progenitor cells   总被引:1,自引:0,他引:1  
The actin cytoskeleton of plant syncytia (a multinucleate cell arising through fusion) is poorly known: to date, there have only been reports about F-actin organization in plant syncytia induced by parasitic nematodes. To broaden knowledge regarding this issue, we analyzed F-actin organization in special heterokaryotic Utricularia syncytia, which arise from maternal sporophytic tissues and endosperm haustoria. In contrast to plant syncytia induced by parasitic nematodes, the syncytia of Utricularia have an extensive F-actin network. Abundant F-actin cytoskeleton occurs both in the region where cell walls are digested and the protoplast of nutritive tissue cells fuse with the syncytium and also near a giant amoeboid in the shape nuclei in the central part of the syncytium. An explanation for the presence of an extensive F-actin network and especially F-actin bundles in the syncytia is probably that it is involved in the movement of nuclei and other organelles and also the transport of nutrients in these physiological activity organs which are necessary for the development of embryos in these unique carnivorous plants. We observed that in Utricularia nutritive tissue cells, actin forms a randomly arranged network of F-actin, and later in syncytium, two patterns of F-actin were observed, one characteristic for nutritive cells and second—actin bundles—characteristic for haustoria and suspensors, thus syncytia inherit their F-actin patterns from their progenitors.  相似文献   

8.
We defined the somatic environment in which female germinal cells develop, and performed ultrastructural analyses of various somatic cell types, with particular reference to muscle cells and follicle cells, that reside within the ovary at different stages of oogenesis. Our findings show that ovarian wall of the crayfish is composed of long muscle cells, blood cells, blood vessels and hemal sinuses. The follicle and germinal cells lie within a common compartment of ovarian follicles that is defined by a continuous basal matrix. The follicle cells form branching cords and migrate to surround the developing oocytes. A thick basal matrix separates the ovarian interstitium from ovarian follicles compartment. Transmission electron microscopy shows that inner layer of basal matrix invaginates deeply into the ovarian compartment. Our results suggest that before being surrounded by follicle cells to form follicles, oogonia and early previtellogenic oocytes reside within a niche surrounded by a basal matrix that separates them from ovarian interstitium. We found coated pits and coated vesicles in the cortical cytoplasm of previtellogenic and vitellogenic oocytes, suggesting the receptor mediated endocytosis for transfer of material from the outside of the oocytes, via follicle cells. The interstitial compartment between the inner muscular layer of the ovarian wall and the basal matrix of the ovarian follicle compartment contains muscle cells, hemal sinuses, blood vessels and blood cells. Granular hemocytes, within and outside the vessels, were the most abundant cell population in the ovarian interstitium of crayfish after spawning and in the immature ovary. J. Morphol. 277:118–127, 2016. © 2015 Wiley Periodicals, Inc.  相似文献   

9.
为了解濒危兰科植物小叶兜兰(Paphiopedilum barbigerum Tang et Wang)胚珠和雌配子体的发育过程,采用常规石蜡切片技术对其果实的生长动态进行了研究。结果表明,授粉后60~75 d的蒴果内种子数量迅速增加,到授粉后120 d时种子充满整个蒴果。授粉后40 d的胎座上分化形成多数由1层表皮细胞包被1列细胞的胚珠原基;授粉后60 d时位于胎座指状结构末端处紧靠表皮细胞下方的孢原细胞分化为大孢子母细胞。之后,大孢子母细胞经过减数分裂和有丝分裂最终形成成熟胚囊;授粉后135 d胚囊发育成熟,附着在胎座上的种子个体分化明显。小叶兜兰胚囊的发育类型为双孢子葱型,胚珠为倒生胚珠,薄珠心,单珠被,成熟胚囊为8核。这为小叶兜兰的生殖生物学及繁殖体系的建立提供理论依据。  相似文献   

10.
A study was made of the ontogeny of the achene of Polygonum pensylvanicum L. from fertilization to maturity. The proembryo is classified as the Polygonum Variation, Asterad Type. Cotyledons are initiated three days after anthesis, and by the fifth day procambium is present in the embryo axis. At approximately seven days after anthesis, the embryo begins to curve and occupy a marginal position in the ovary. By ten days the first foliage leaf primordium is initiated at the stem apex of the embryo. At maturity the embryo consists of two cotyledons, a plumule composed of the stem apex and one leaf primordium, and a hypocotyl with a well-developed radicle. Endosperm nuclei begin to divide before the first division of the zygote. Cell wall formation begins in the endosperm at the micropylar end of the embryo sac and proceeds toward the chalazal region. By the fifth day the endosperm is completely cellular, except for a basal projection; and a peripheral meristem has been established. At approximately ten days the peripheral meristem ceases periclinal cell division and becomes the aleurone. At the time of fertilization the ovary wall has its full complement of cell layers. The walls of the outermost cells elongate and become convoluted. Subsequent thickening and lignification of these cell walls produce the hard epicarp of the mature achene.  相似文献   

11.
Although the overall pattern and timing of gonadal sex differentiation have been established in a considerable number of teleosts, the ultrastructure of early stages of gonadal development is not well documented. In this study, gonads from larval and juvenile stages of laboratory-reared Cichlasoma dimerus were examined at the light-microscopic and ultrastructural levels. This freshwater species adapts easily to captivity and spawns with high frequency during 8 months of the year, providing an appropriate model for developmental studies. Larvae and juveniles were kept at a water temperature of 26.5 +/- 1 degrees C and a 12:12 hour photoperiod. Gonadal development was documented from 14-100 days postfertilization, covering the period of histologically discernible sex differentiation. Gonadal tissue was processed according to standard techniques for light and electron microscopy. C. dimerus, a perciform teleost, is classified as a differentiated gonochorist, in which an indifferent gonad develops directly into a testis or ovary. On day 14, the gonadal primordium consists of a few germ cells surrounded by enveloping somatic cells. Ovarian differentiation precedes testicular differentiation, as usual in teleost fishes. The earliest signs of differentiation, detected from day 42 onward, include the onset of meiotic activity in newly formed oocytes, which is soon accompanied by increased oogonial mitotic proliferation and the somatic reorganization of the presumptive ovary. The ovarian cavity is completely formed by day 65. Numerous follicles containing perinucleolar oocytes are observed by day 100. In contrast, signs of morphological differentiation in the presumptive testis are not observed until day 72. By day 100, the unrestricted lobular organization of the testis is evident. The latest stage of spermatogenesis observed by this time of testicular development is spermatocyte II.  相似文献   

12.
Some histological details of the adult ovary of Hyleoglomeris japonica are described for the first time in the glomerid diplopods. The ovary is a single, long sac-like organ extending from the 4th to the 12th body segment along the median body axis, lying between the alimentary canal and the ventral nerve cord. The ovarian wall consists of a layer of thin ovarian epithelium which surrounds a wide ovarian lumen. A pair of longitudinal “germ zones,” including female germ cells, runs in the lateral ovarian wall. Each germ zone consists of two types of oogenetic areas: 1) 8–12 narrow patch-shaped areas for oogonial proliferation, arranged metamerically in a row along each of the dorsal and ventral peripheries, and 2) the remaining wide area for oocyte growth. Oogonial proliferation areas include oogonia, very early previtellogenic oocytes, and young somatic interstitial cells, among the ovarian epithelial cells. The larger early previtellogenic oocytes in the oogonial proliferation areas are located nearer to the oocyte growth area, and migrate to the oocyte growth area. They are surrounded by a layer of follicle cells and are connected with the ovarian epithelium of the oocyte growth area by a portion of their follicles. They grow into the ovarian lumen, but their follicles are still connected with the oocyte growth area. Various sizes of the previtellogenic and vitellogenic oocytes in the ovarian lumen are connected with the oocyte growth area; the smaller oocytes are connected nearer to the dorsal and ventral oogonial proliferation areas, while the larger ones are connected nearer to the longitudinal middle line of the oocyte growth area. Following the completion of vitellogenesis and egg membrane formation in the largest primary oocytes, the germinal vesicles break down. Ripe oocytes are released from their follicles directly into the ovarian lumen to be transported into the oviducts. Ovarian structure and oogenesis of H. japonica are very similar to those of other chilognathan diplopods. At the same time, however, some characteristic features of the ovary of H. japonica are helpful for understanding the structure and evolution of the diplopod ovaries. Some aspects of the phylogenetic significance in the paired germ zones of H. japonica are discussed. J. Morphol 231:277–285, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

13.
The syncytium formed by Utricularia is extremely unusual and perhaps unique among angiosperm syncytia. All typical plant syncytia (articulated laticifers, amoeboid tapetum, the nucellar plasmodium of river weeds) are formed only by fusion of sporophytic cells which possess the same genetic material, unlike Utricularia in which the syncytium possesses nuclei from two different sources: cells of maternal sporophytic nutritive tissue and endosperm haustorium (both maternal and paternal genetic material). How is this kind of syncytium formed and organized and is it similar to other plant syncytial structures? We used light and electron microscopy to reconstruct the step-by-step development of the Utricularia syncytia. The syncytia of Utricularia developed through heterotypic cell fusion involving the digestion of the cell wall, and finally, heterokaryotic multinucleate structures were formed, which possessed different-sized nuclei that were not regularly arranged in the cytoplasm. We showed that these syncytia were characterized by hypertrophy of nuclei, abundant endoplasmic reticulum and organelles, and the occurrence of wall ingrowths. All these characters testify to high activity and may confirm the nutritive and transport functions of the syncytium for the developing embryo. In Utricularia, the formation of the syncytium provides an economical way to redistribute cell components and release nutrients from the digested cell walls, which can now be used for the embryo, and finally to create a large surface for the exchange of nutrients between the placenta and endosperm.  相似文献   

14.
Transmission electron microscopy reveals that the ovaries of Ferosagitta hispida contain four somatic tissues. A myoepithelial ovary wall, continuous with a thin layer of peritoneocytes lining the coelomic cavity, encloses a fluid-filled ovarian space in which oocytes develop. Lamellar extensions of a “follicular reticulum” branch throughout the ovarian space and ensheath developing oocytes. This tissue has been overlooked in most previous studies of chaetognath ovaries. A bipartite oviductal complex extends the length of each ovary just within the lateral ovary wall. It consists of a flattened, blindly ending cellular tube, herein referred to as the cellular sheath, and an enclosed syncytium. Sheath cells secrete an electron-dense product into the ovarian space. Those sheath cells directly bordering the syncytium are contractile and are joined to the to the syncytium by gap junctions and microvillar interdigitations. The syncytium contains a complex of membrane-bounded lumina. The latter sometimes enclose sperm received during mating or ovulated eggs. Thus the syncytium serves both as a seminal receptacle and as a duct for passage of eggs to the outside. Contrary to several classical reports, the cellular sheath and syncytium of the oviductal complex do not separate at ovulation to form a temporary oviductal lumen.  相似文献   

15.
Mature mouse oocytes currently can be generated in vitro from the primary oocytes of primordial follicles but not from premeiotic fetal germ cells. In this study we established a simple, efficient method that can be used to obtain mature oocytes from the premeiotic germ cells of a fetal mouse 12.5 days postcoitum (dpc). Mouse 12.5-dpc fetal ovaries were transplanted under the kidney capsule of recipient mice to initiate oocyte growth from the premeiotic germ cell stage, and they were recovered after 14 days. Subsequently, the primary and early secondary follicles generated in the ovarian grafts were isolated and cultured for 16 days in vitro. The mature oocytes ovulated from these follicles were able to fertilize in vitro to produce live offspring. We further show that the in vitro fertilization offspring were normal and able to successfully mate with both females and males, and the patterns of the methylated sites of the in vitro mature oocytes were similar to those of normal mice. This is the first report describing premeiotic fetal germ cells able to enter a second meiosis and support embryonic development to term by a combination of in vivo transplantation and in vitro culture. In addition, we have shown that the whole process of oogenesis, from premeiotic germ cells to germinal vesicle (GV)-stage oocytes, can be carried out under the kidney capsule.  相似文献   

16.
Several notable features of early gonadal sex differentiation in the golden rabbitfish Siganus guttatus are described including the first report among teleosts of a distinctive dual structure, consisting of somatic cells directly enclosing germ cells (sex cord‐like structure, SCS) and outer somatic tissue surrounding the SCS, in both undifferentiated and early differentiated gonads. Germ cells occurred and proliferated exclusively in the SCS during the process of ovarian and testicular differentiation. A second remarkable characteristic was the delayed germinal cell proliferation for oogenesis in the ovary, that commenced simultaneously with that in the testis, a relatively long time after the onset of somatic development. These observations suggest the possibility that sex differentiation of germ cells is preceded by some sex specific changes in somatic components of the SCS that are light‐microscopically indistinguishable between the sexes. The third unique feature was the detachment of gonadal tissue, including both somatic and germ cells, into the ovarian cavity in the ovary and into the seminiferous lobules and main seminal duct in the testis. This phenomenon occurred in the testis, forming the efferent duct network after 73 days post‐hatch (DPH), and in the ovaries, forming the ovigerous lamellae and regulating the number of oocytes attaining full maturation at c . 129 DPH.  相似文献   

17.
18.
19.
The soybean PI 437654 is resistant to all known races of the soybean cyst nematode (SCN) in the U.S.A. and became a new source of resistance genes in cultivar development. Race 3, a wide-ranging nematode pathotype, was used to examine root cells of PI 437654 and susceptible 'Essex', 2, 3, and 5 days after inoculation (DAI). In initial response to SCN, both genotypes formed syncytia by cell wall dissolutions. Hypertrophy of syncytium component cells and hyperplasia of cells near syncytia were observed. At 2 DAI, incompatible response of PI 437654 to SCN was exhibited: limited cell hypertrophy, inhibition of syncytium growth, initiation of necrosis, and wall appositions. At 3 DAI, cellular events appeared to be a sum of the operative mechanisms for SCN resistance: irregular wall thickening, pronounced wall appositions, necrosis, and nuclear breakdown followed by cytoplasmic collapse. The cells surrounding the syncytia showed necrosis, wall apposition, and accumulation of electron-dense bodies. By 5 DAI, syncytia and neighboring cells were totally devoid of ground plasma and the degeneration process was completed. The normal route for early syncytium development in 'Essex' (increased number of organelles, intense vacuolization, accumulation of dense deposits in vacuoles, and wall ingrowths) suggests the involvement of portions of the developmental pathway of differentiating tissues in organogenesis. Early onset of SCN resistance 2 DAI in PI 437654 suggests rapid activation of genes in a cascade reaction leading to cell death. Key words : soybean, nematode, syncytium, cell death.  相似文献   

20.
《Journal of morphology》2017,278(12):1667-1681
The structure of the ovary and oogenesis of Poecilia mexicana from an active sulfur spring cave is documented. Poecilia mexicana is the only poeciliid adapted to a subterranean environment with high hydrogen sulfide levels and extreme hypoxic conditions. Twenty females were captured throughout one year at Cueva del Azufre, located in the State of Tabasco in Southern Mexico. Ovaries were processed with histological techniques. P. mexicana has a single, ovoid ovary with ovigerous lamella that project to the ovarian lumen. The ovarian wall presents abundant loose connective tissue, numerous melanomacrophage centers and large blood vessels, possibly associated with hypoxic conditions. The germinal epithelium bordering the ovarian lumen contains somatic and germ cells forming cell nests projecting into the stroma. P. mexicana stores sperm in ovarian folds associated with follicles at different developmental phases. Oogenesis in P. mexicana consisted of the following stages: (i) oogonial proliferation, (ii) chromatin nucleolus, (iii) primary growth, subdivided into: (a) one nucleolus, (b) multiple nucleoli, (c) droplet oils‐cortical alveoli steps; (iv) secondary growth, subdivided in: (a) early secondary growth, (b) late secondary growth, and (c) full grown. Follicular atresia was present in all stages of follicular development; it was characterized by oocyte degeneration, where follicle cells hypertrophy and differentiate in phagocytes. The ovary and oogenesis are similar to these seen in other poeciliids, but we found frequent atretic follicles, melanomacrophage centers, reduced fecundity and increased of offspring size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号