首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. The spectrophotometric and steady-state kinetic properties of glucose oxidase (EC 1.1.3.4, from Aspergillus niger) that is covalently linked to porous glass beads have been examined. These properties have been compared with those of soluble glucose oxidase, for which the kinetic mechanism at pH5.5 and 25 degrees C has been established previously by a combination of conventional and rapid-reaction techniques to be the following: [Formula: see text] where E(o) and E(r) represent oxidized and reduced forms of the enzyme, respectively. 2. The ratio k(+4)/k(+2) is unchanged after insolubilization, and evidence is presented which suggests that the absolute magnitudes of k(+4) and k(+2) are unchanged. 3. The kinetic efficiency of the insolubilized enzyme is greatly enhanced because of a 14-fold increase in the apparent affinity of glucose for E(o). This effect is attributed either to the binding of glucose to the glass surface or to a change in enzyme structure imposed by the insolubilization process. 4. Only 6% of the insolubilized enzyme which can be reduced by glucose is catalytically active. It is shown by calculation and direct experimental evidence that this fraction of catalytically active enzyme is bound to the exterior bead surface. The remaining 94% of the enzyme is bound within the pore network and may be subject to severe substrate diffusion control.  相似文献   

2.
3.
In this study the kinetics of conversion of a low-soluble substrate by an immobilized enzyme was investigated with respect to the diffusion limitation within porous and non-porous carriers. Non-porous micro-magnetic beads in comparison to conventional porous supports like Eupergit and Sepharose were tested. Due to their small diameters and their magnetic properties, micro-magnetic beads are especially applicable in diffusion rate-controlled processes in biological suspensions. The enzymatic reaction studied was the conversion of emulsified dirhamnolipid by immobilized Naringinase from Penicillium decumbens to monorhamnolipid and L-rhamnose. Taking into account mass transfer phenomena, the variation of the reaction effectiveness factor with increasing enzyme loading was estimated and compared with experimental efficiencies utilizing different enzyme loaded immobilized preparations. For comparison, carrier activities were also determined with the model substrate p-nitro-phenyl-rhamnoside. Intrinsic enzyme activities were thereby evaluated for porous supports. Highest specific activities were obtained with the micro-magnetic beads. These non-porous micro-beads demonstrated to be the most suitable carrier for bioconversion of a low-soluble substrate like rhamnolipids, where mass diffusional resistances in the three-phase reaction process are completely overcome. However, the smaller particle surface available limited the specific activity obtained at high protein loadings.  相似文献   

4.
A photobioreactor was constructed with porous glass as an immobilization matrix. The reactor was a rectangular glass chamber (inner dimensions: 125 × 50 × 2.5 mm) containing a porous glass sheet (125 × 50 × 0.5 mm) on which Rhodobacter sphaeroides RV was immobilized (11.2 mg dry wt./ml porous glass). The maximum rate of hydrogen evolution was 1.3 ml/h/ml porous glass. The conversion efficiency of succinate into hydrogen reached 75%. Stable and efficient hydrogen evolution continued for up to 40 d.  相似文献   

5.
High activity of glucose oxidase (GOD) enzyme (immobilized in porous silica particles) is desirable for a better glucose biosensor. In this work, effect of pore diameter of two porous hosts on enzyme immobilization, activity and glucose sensing was compared. The hosts were amine functionalized: (i) microporous silica (NH2-MS) and (ii) mesoporous silica (NH2-SBA-15). Based on whether the dimension of GOD is either larger or smaller than the pore diameter, GOD was immobilized on either external or internal surface of NH2-MS and NH2-SBA-15, with loadings of 512.5 and 634 mg/g, respectively. However, GOD in NH2-SBA-15 gave a higher normalized absolute activity (NAA), which led to an amperometric sensor with a larger linear range of 0.4–13.0 mM glucose. In comparison, GOD in NH2-MS had a lower NAA and a smaller linear range of 0.4–3.1 mM. In fact, the present GOD-NH2-SBA-15 electrode based sensor was better than other MS and SBA-15 based electrodes reported in literature. Thus, achieving only a high GOD loading (as in NH2-MS) does not necessarily give a good sensor performance. Instead, a host with a relatively larger pore than enzyme, together with optimized electrode composition ensures the sensor to be functional in both hyper- and hypoglycemic range.  相似文献   

6.
Glucose sensing electrodes have been realized by immobilizing glucose oxidase (GOx) on unmodified edge plane of highly oriented pyrolytic graphite (epHOPG) and the native oxide of heavily doped silicon (SiO2/Si). Both kinds of electrode show direct interfacial electron transfer due to the redox process of the immobilized GOx. The measured formal potential of the redox process agrees with that of the native enzyme, suggesting that the immobilized GOx has retained its enzymatic activity. The electron transfer rates of the GOx immobilized electrode are 2s(-1) for GOx/epHOPG electrode and 7.9s(-1) for GOx/SiO2/Si electrode, which are greater than those for which GOx is immobilized on modified electrodes, probably due to the fact that the enzyme makes direct contact to electrode surface. The preservation of the enzymatic activity of the immobilized GOx has been confirmed by observing the response of the GOx/epHOPG and GOx/SiO2/Si electrodes to glucose with a detection limit of 0.050 mM. The response signals the catalyzed oxidation of glucose and, therefore, confirms that the immobilized GOx retained its enzymatic activity. The properties of the electrode as a glucose sensor are presented.  相似文献   

7.
Subtilisin BPN′ was immobilized to porous glass via isothiocyanate coupling. The pH optimum of the enzyme was shifted to the alkaline side on binding. This effect was more pronounced with ethyl lactate than with N-tosyl arginine methyl ester (TAME). Presumably, the shift is a reflection of the negative charge on the surface of the glass. The Michaelis constant and Vmax of soluble subtilisin BPN′ with TAME were two and one orders of magnitude, respectively, lower than with ethyl lactate. Vmax, calculated per g of active enzyme, with TAME as the substrate was not affected by immobilization, while Vmax with ethyl lactate decreased greater than tenfold. The apparent KM decreased on immobilization with ethyl lactate as substrate and increased with TAME. Results are explained in terms of diffusional resistance and a possible attraction of ethyl lactate to the glass surface. Active site titration indicated that about 25%, of the immobilized enzyme was active.  相似文献   

8.
Directed evolution has become an important enabling technology for the development of new enzymes in the chemical and pharmaceutical industries. Some of the most interesting substrates for these enzymes, such as polymers, have poor solubility or form highly viscous solutions and are therefore refractory to traditional high-throughput screens used in directed evolution. We combined digital imaging spectroscopy and a new solid-phase screening method to screen enzyme variants on problematic substrates highly efficiently and show here that the specific activity of the enzyme galactose oxidase can be improved using this technology. One of the variants we isolated, containing the mutation C383S, showed a 16-fold increase in activity, due in part to a 3-fold improvement in K(m). The present methodology should be applicable to the evolution of numerous other enzymes, including polysaccharide-modifying enzymes that could be used for the large-scale synthesis of modified polymers with novel chemical properties.  相似文献   

9.
Partially purified lactoses (β-D -galactoside galactohydrolase, EC 3.2.1.23) from Aspergillus niger, Ladobacillus helveticus, and Saccharomyces lactis were immobilized on diazotized porous glass particles (mean pore diameter, 86.5 nm: particle size diameters, 75–125 μm). In acid whey containing 4–4.5% lactose, A. niger lactase gave the highest activity (89 μmoles lactose hydrolyzed/g glass, min) at 55°C and pH 4.5. Glass-immobilized A. niger laclases (lactase-BG) retained much hydrolytic activity after storage and periodic use for 165 days at 55°C. For values of X greater than 30%, hydrolysis of 0.12M lactose in acid whey by a continuous flow column packed with 2 ml of lactase-BG particles could be correlated by X = 17.2(V/F) + 12.5 where X = lactose hydrolysis, percent of lactose originally present; V = volume of packed bed of lactase-BG, ml; F = flow rate of acid whey, ml/min.  相似文献   

10.
11.
A phenomenological model has been developed to describe biomass distribution and substrate depletion in porous diatomaceous earth (DE) pellets colonized by Pseudomonas aeruginosa. The essential features of the model are diffusion, attachment and detachment to/from pore walls of the biomass, diffusion of substrate within the pellet, and external mass transfer of both substrate and biomass in the bulk fluid of a packed bed containing the pellets. A bench-scale reactor filled with DE pellets was inoculated with P. aeruginosa and operated in plug flow without recycle using a feed containing glucose as the limiting nutrient. Steady-state effluent glucose concentrations were measured at various residence times, and biomass distribution within the pellet was measured at the lowest residence time. In the model, microorganism/substrate kinetics and mass transfer characteristics were predicted from the literature. Only the attachment and detachment parameters were treated as unknowns, and were determined by fitting biomass distribution data within the pellets to the mathematical model. The rate-limiting step in substrate conversion was determined to be internal mass transfer resistance; external mass transfer resistance and microbial kinetic limitations were found to be nearly negligible. Only the outer 5% of the pellets contributed to substrate conversion. (c) 1993 Wiley & Sons, Inc.  相似文献   

12.
A design equation is presented for packed-bed reactors containing immobilized enzymes in spherical porous particles with internal diffusion effects and obeying reversible one-intermediate Michaelis-Menten kinetics. The equation is also able to explain irreversible and competitive product inhibition kinetics. It allows the axial substrate profiles to be calculated and the dependence of the effectiveness factor along the reactor length to be continuously evaluated. The design equation was applied to explain the behavior of naringinase immobilized in Glycophase-coated porous glass operating in a packed-bed reactor and hydrolyzing both p-nitrophenyl-alpha-L-rhamnoside and naringin. The theoretically predicted results were found to fit well with experimentally measured values.  相似文献   

13.
This paper is devoted to the mathematical analysis of a reaction and diffusion model for Lyme disease. In the case of a bounded spatial habitat, we obtain the global stability of either disease-free or endemic steady state in terms of the basic reproduction number R?. In the case of an unbounded spatial habitat, we establish the existence of the spreading speed of the disease and its coincidence with the minimal wave speed for traveling fronts. Our analytic results show that R? is a threshold value for the global dynamics and that the spreading speed is linearly determinate.  相似文献   

14.
 Copper(II) complexes derived from the tripodal ligand bis(3′-t–butyl-2′-hydroxybenzyl)(2-pyridylmethyl)amine (LH2) have been studied in order to mimic the redox active site of the free radical-containing copper metalloenzyme galactose oxidase. In non-coordinating solvents such as dichloromethane, only an EPR-silent dimeric complex was obtained (L2Cu2). The crystal structure of L2Cu2 revealed a "butterfly" design of the [Cu(μOR)2Cu] unit, which is not flattened and leads to a short Cu–Cu distance, the t–butyl groups being localized on the same side of the [Cu(μOR)2Cu] unit. The dimeric structure was broken down by acetonitrile or by alcohols, leading quantitatively to a brown mononuclear copper(II) complex. UV-visible and EPR data indicated the coordination of the solvent in these mononuclear complexes. Electrochemical as well as chemical (silver acetate) one-electron oxidation of acetonitrile solutions of the monomeric complex led to a yellow-green solution. Based on EPR, UV-visible and resonance Raman spectroscopy, the one-electron oxidation product was identified as a cupric phenoxyl radical system. It slowly decomposes into a product where the ligand has been substituted (dimerization) in the para position of the hydroxyl group, for one of the phenolic groups. The data for the one-electron oxidized species provides strong evidence for a free-radical copper (II) complex. Received: 19 July 1996 / Accepted: 16 October 1996  相似文献   

15.
The evolution of slow dispersal rates: a reaction diffusion model   总被引:1,自引:0,他引:1  
 We consider n phenotypes of a species in a continuous but heterogeneous environment. It is assumed that the phenotypes differ only in their diffusion rates. With haploid genetics and a small rate of mutation, it is shown that the only nontrivial equilibrium is a population dominated by the slowest diffusing phenotype. We also prove that if there are only two possible phenotypes, then this equilibrium is a global attractor and conjecture that this is true in general. Numerical simulations supporting this conjecture and suggesting that this is a robust phenomenon are also discussed. Received: 29 January 1997 / Revised version: 23 September 1997  相似文献   

16.
The fast enzymatic hydrolysis of D ,L -phenylalanine methylester (DLE) to L -phenylalanine (LA) and D -phenylalanine methylester (DE) with immobilized α-chymotrypsin was chosen as a model reaction. Under the experimental conditions applied in the present investigations the pore diffusion is the rate-limiting step of this reaction owing to the pH gradient in the particles. The effectiveness of the catalyst is experimentally determined as a function of the substrate concentration based on measurements of the enzyme protein content of native and immobilized enzyme. The proteolytic reaction is theoretically treated by also using a pore diffusion model which takes into account the concentration gradients of substrate and product, pH- and enzyme activity profiles, as well as the change of buffer capacity of the solute in the catalyst particles. The model parameters were experimentally determined for the investigated system. It can be shown that conditions are possible for which the effectiveness of the catalyst exceeds unity.  相似文献   

17.
18.
'Sugar esters' are non-ionic biodegradable surfactant which are potentially attractive for the cosmetic and food market. Unfortunately, the formation of by-products by chemical synthesis affects the quality of the surfactant. Enzymatic synthesis is a promising and environmentally friendly approach preventing this problem but requiring a proper setting up of the reaction system (membrane reactor, azeotropic mixture, pervaporation system, etc.) for the control of the water activity so that the enzyme efficiency is often negatively affected. In this paper, the synthesis of glucosylmyristate by Novozym 435 is taken as a model to illustrate the general features of the 'sugar esters' synthesis, with particularly regard to the influence on the synthesis of the pre-reaction treatment of the enzyme and reaction mixture, water adsorbents, reaction solvents, products and reagents. The aim is reached by placing the water adsorbents in contact with the enzyme preparation, so that high dehydration efficiency is achieved and the other factors affecting the kinetic of the synthesis are better highlighted.  相似文献   

19.
20.
Presented is a reaction-diffusion model for the interaction of pioneer and climax species. For certain parameters the system exhibits bistability and traveling wave solutions. Specifically, we show that when the climax species diffuses at a slow rate there are traveling wave solutions which correspond to extinction waves of either the pioneer or climax species. A leading order analysis is used in the one-dimensional spatial case to estimate the wave speed sign that determines which species becomes extinct. Results of these analyses are then compared to numerical simulations of wave front propagation for the model on one and two-dimensional spatial domains. A simple mechanism for harvesting is also introduced.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号