首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Both the plant and the fungus benefit nutritionally in the arbuscular mycorrhizal symbiosis: The host plant enjoys enhanced mineral uptake and the fungus receives fixed carbon. In this exchange the uptake, metabolism, and translocation of carbon by the fungal partner are poorly understood. We therefore analyzed the fate of isotopically labeled substrates in an arbuscular mycorrhiza (in vitro cultures of Ri T-DNA-transformed carrot [Daucus carota] roots colonized by Glomus intraradices) using nuclear magnetic resonance spectroscopy. Labeling patterns observed in lipids and carbohydrates after substrates were supplied to the mycorrhizal roots or the extraradical mycelium indicated that: (a) 13C-labeled glucose and fructose (but not mannitol or succinate) are effectively taken up by the fungus within the root and are metabolized to yield labeled carbohydrates and lipids; (b) the extraradical mycelium does not use exogenous sugars for catabolism, storage, or transfer to the host; (c) the fungus converts sugars taken up in the root compartment into lipids that are then translocated to the extraradical mycelium (there being little or no lipid synthesis in the external mycelium); and (d) hexose in fungal tissue undergoes substantially higher fluxes through an oxidative pentose phosphate pathway than does hexose in the host plant.  相似文献   

2.
The regulation of the structural composition and complexity of the mycelium of arbuscular mycorrhizal (AM) fungi is not well understood due to their obligate biotrophic nature. The aim of this study was to investigate the structure of extraradical mycelium at high and low availability of carbon (C) to the roots and phosphorus (P) to the fungus. We used monoxenic cultures of the AM fungus Rhizophagus irregularis (formerly Glomus intraradices) with transformed carrot roots as the host in a cultivation system including a root-free compartment into which the extraradical mycelium could grow. We found that high C availability increased hyphal length and spore production and anastomosis formation within individual mycelia. High P availability increased the formation of branched absorbing structures and reduced spore production and the overall length of runner hyphae. The complexity of the mycelium, as indicated by its fractal dimensions, increased with both high C and P availability. The results indicate that low P availability induces a growth pattern that reflects foraging for both P and C. Low C availability to AM roots could still support the explorative development of the mycelium when P availability was low. These findings help us to better understand the development of AM fungi in ecosystems with high P input and/or when plants are subjected to shading, grazing or any management practice that reduces the photosynthetic ability of the plant.  相似文献   

3.
We monitored the development of intraradical and extraradical mycelia of the arbuscular mycorrhizal (AM) fungi Scutellospora calospora and Glomus intraradices when colonizing Plantago lanceolata. The occurrence of arbuscules (branched hyphal structures) and vesicles (lipid storage organs) was compared with the amounts of signature fatty acids. The fatty acid 16:1ω5 was used as a signature for both AM fungal phospholipids (membrane constituents) and neutral lipids (energy storage) in roots (intraradical mycelium) and in soil (extraradical mycelium). The formation of arbuscules and the accumulation of AM fungal phospholipids in intraradical mycelium followed each other closely in both fungal species. In contrast, the neutral lipids of G. intraradices increased continuously in the intraradical mycelium, while vesicle occurrence decreased after initial rapid root colonization by the fungus. S. calospora does not form vesicles and accumulated more neutral lipids in extraradical than in intraradical mycelium, while the opposite pattern was found for G. intraradices. G. intraradices allocated more of its lipids to storage than did S. calospora. Thus, within a species, the fatty acid 16:1ω5 is a good indicator for AM fungal development. The phospholipid fatty acid 16:1ω5 is especially suitable for indicating the frequency of arbuscules in the symbiosis. We propose that the ratio of neutral lipids to phospholipids is more important than is the presence of vesicles in determining the storage status of AM fungi.  相似文献   

4.
The direct impact of fenpropimorph on the sterol biosynthesis pathway of Glomus intraradices when extraradical mycelia alone are in contact with the fungicide was investigated using monoxenic cultures. Bi-compartmental Petri plates allowed culture of mycorrhizal chicory roots in a compartment without fenpropimorph and exposure of extraradical hyphae to the presence of increasing concentrations of fenpropimorph (0, 0.02, 0.2, 2, 20 mg l−1). In the fungal compartment, sporulation, hyphal growth, and fungal biomass were already reduced at the lowest fungicide concentration. A decrease in total sterols, in addition to an increase in the amount of squalene and no accumulation of abnormal sterols, suggests that the sterol pathway is severely slowed down or that squalene epoxidase was inhibited by fenpropimorph in G. intraradices. In the root compartment, neither extraradical and intraradical development of the arbuscular mycorrhizal (AM) fungus nor root growth was affected when they were not in direct contact with the fungicide; only hyphal length was significantly affected at 2 mg l−1 of fenpropimorph. Our results clearly demonstrate a direct impact of fenpropimorph on the AM fungus by a perturbation of its sterol metabolism.  相似文献   

5.
The rate of global deposition of Cd, Pb, and Zn has decreased over the past few decades, but heavy metals already in the soil may be mobilized by local and global changes in soil conditions and exert toxic effects on soil microorganisms. We examined in vitro effects of Cd, Pb, and Zn on critical life stages in metal-sensitive ecotypes of arbuscular mycorrhizal (AM) fungi, including spore germination, presymbiotic hyphal extension, presymbiotic sporulation, symbiotic extraradical mycelium expansion, and symbiotic sporulation. Despite long-term culturing under the same low-metal conditions, two species, Glomus etunicatum and Glomus intraradices, had different levels of sensitivity to metal stress. G. etunicatum was more sensitive to all three metals than was G. intraradices. A unique response of increased presymbiotic hyphal extension occurred in G. intraradices exposed to Cd and Pb. Presymbiotic hyphae of G. intraradices formed presymbiotic spores, whose initiation was more affected by heavy metals than was presymbiotic hyphal extension. In G. intraradices grown in compartmentalized habitats with only a portion of the extraradical mycelium exposed to metal stress, inhibitory effects of elevated metal concentrations on symbiotic mycelial expansion and symbiotic sporulation were limited to the metal-enriched compartment. Symbiotic sporulation was more sensitive to metal exposure than symbiotic mycelium expansion. Patterns exhibited by G. intraradices spore germination, presymbiotic hyphal extension, symbiotic extraradical mycelium expansion, and sporulation under elevated metal concentrations suggest that AM fungi may be able to survive in heavy metal-contaminated environments by using a metal avoidance strategy.  相似文献   

6.
Liu  A.  Hamel  C.  Hamilton  R. I.  Smith  D. L. 《Plant and Soil》2000,221(2):157-166
A study was conducted to evaluate the effect of N and P supply levels on mycorrhizal formation and nutrient uptake in corn hybrids with different architectures and to determine arbuscular mycorrhizal fungal (AMF) development in relation to shoot N/P ratio and shoot:root ratio. Corn pot cultures with a pasteurized medium of two parts sand and one part sandy loam soil were grown in the greenhouse. Marigold plants inoculated or not with Glomus intraradices Schenck & Smith were used to establish an AMF hyphal network in the designated soil pots. Corn hybrids were seeded after removal of the marigold plant. Mycorrhizal colonization of corn hybrids and the quantity of extraradical hyphae produced in soil were greatest at the lowest P level and at the intermediate N level. Root colonization was correlated with shoot N/P ratio only at the intermediate N level. The shoot concentrations of P, Mg, Zn and Cu were significantly higher in mycorrhizal plants than in non-mycorrhizal plants. The corn phenotype with the highest shoot:root ratio had the highest root colonization. The corn hybrid with a leafy normal stature architecture had a greater mycorrhizal colonization than that of other two corn hybrids. This experiment showed that N level in soil influenced shoot N/P ratio, root colonization and extraradical hyphal production, which in turn influenced uptake of other nutrients. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Arbuscular mycorrhizal (AM) fungi are mutualistic symbionts living in the roots of 80% of land plant species, and developing extensive, below-ground extraradical hyphae fundamental for the uptake of soil nutrients and their transfer to host plants. Since AM fungi have a wide host range, they are able to colonize and interconnect contiguous plants by means of hyphae extending from one root system to another. Such hyphae may fuse due to the widespread occurrence of anastomoses, whose formation depends on a highly regulated mechanism of self recognition. Here, we examine evidences of self recognition and non-self incompatibility in hyphal networks formed by AM fungi and discuss recent results showing that the root systems of plants belonging to different species, genera and families may be connected by means of anastomosis formation between extraradical mycorrhizal networks, which can create indefinitely large numbers of belowground fungal linkages within plant communities.Key Words: arbuscular mycorrhizal symbiosis, extraradical mycelium, anastomosis, plant interconnectedness, self recognition, non-self incompatibility, mycorrhizal networks  相似文献   

8.
The ability of the external mycelium in arbuscular mycorrhiza for N uptake and transport was studied. The contribution of the fungal symbiont to N acquisition by plants was studied mainly under waterstressed conditions using 15N. Lettuce (Lactuca sativa L) was the host for two isolates of the arbuscular mycorrhizal fungi Glomus mosseae and G. fasciculatum. The experimental pots had two soil compartments separated by a fine mesh screen (60 m). The root system was restricted to one of these compartments, while the fungal mycelium was able to cross the screen and colonize the soil in the hyphal compartment. A trace amount of 15NH 4 + was applied to the hyphal compartment 1 week before harvest. Under water-stressed conditions both endophytes increased the 15N enrichment of plant tissues; this was negligible in nonmycorrhizal control plants. This indicates a direct effect of arbuscular mycorrhizal fungi on N acquisition in relatively dry soils. G. mosseae had more effect on N uptake and G. fasciculatum on P uptake under the water-limited conditions tested, but both fungi improved plant biomass production relative to nonmycorrhizal plants to a similar extent.  相似文献   

9.
The interaction between Glomus intraradices and the root-lesion nematode Pratylenchus vulnus was studied on micropropagated BA-29 quince rootstock during one growing season. Inoculation with G. intraradices significantly increased growth of plants in low P soil and was more effective than P fertilization at increasing top-plant development. In the presence of the nematode, mycorrhizal plants achieved higher values in all growth parameters measured. P. vulnus caused a significant decrease in the percentage of root length colonized by G. intraradices and fewer internal vesicles were formed within the host roots. Enhanced root mass production accounted for the twofold increase in final nematode population recovered from plants with combined inoculations of pathogen and symbiont. Low levels were found of Al, Fe, Mn and Zn in nonmycorrhizal nematode-infected plants in low P soil. G. intraradices-inoculated plants reached the highest foliar levels of N, Ca, Mg, Mn, Cu and Zn. Mycorrhizal plants infected with P. vulnus maintained normal to high levels of Mn, Cu, and Zn. Inoculation with G. intraradices favours quince growth and confers protection against P. vulnus by improving plant nutrition.  相似文献   

10.
Development and heavy metal tolerance of two cultivation lineages of the indigenous isolate of arbuscular mycorrhizal fungus (AMF)Glomus intraradices PH5 were compared in a pot experiment in soil from lead (Pb) smelter waste deposits. One lineage was sub-cultured in original Pb-contaminated soil; the second one was maintained for 13 months in an inert substrate (river sand) without Pb stress. The contribution of these cultivation lineages to the Pb uptake and accumulation by the host plantAgrostis capillaris was investigated. The experiment was conducted in a compartmented system where the lateral compartments withAgrostis seedlings were separated from the central pot containing 4-week olderAgrostis plants by a nylon mesh for allowing out-growing of extraradical mycelium (ERM) from the pot. No differences in mycorrhizal colonization, ERM length and viability were observed between the two lineages ofG. intraradices PH5 in the soil of the isolate origin. However, the ability to support plant growth and Pb uptake differed between the lineages and also between the plants in the central pots and the lateral compartments. The growth of the plants in the central pots was positively affected by AMF inoculation. The plants inoculated with the lineage maintained in original soil showed larger shoot biomass and higher shoot P content as compared to the other inoculation treatments. The shoot Pb concentration of these plants was lower when compared to the plants inoculated with the lineage sub-cultured in the inert substrate. However the concentration did not differ from non-mycorrhizal control or from the reference isolateG. intraradices BEG75 from non-contaminated soil. Also shoot Pb contents were similar for all inoculation treatments. The development ofG. intraradices BEG75 in the contaminated soil was very poor; this isolate was not able to initiate colonization of seedlings in lateral compartments. In lateral compartments, growth of seedlings in contaminated soil was inhibited by theG. intraradices PH5 lineage maintained in the inert substrate. Pb translocation from the seedling roots to shoots was increased for plants inoculated with either lineage as compared to the non-mycorrhizal control; however, the increase for the lineage cultivated in the inert substrate was significantly higher in comparison with that maintained in the original soil. After 13 months of cultivation in a metal free substrate, theG. intraradices isolate from Pb contaminated soil did not lose its tolerance to Pb as regards colonization of plant roots and growth of ERM in the soil of its origin. However, its ability to support plant growth and to prevent Pb translocation from the roots to the shoots was decreased.  相似文献   

11.
In order to evaluate host plant performance relative to different soil arbuscular mycorrhizal fungal (AMF) communities, Andropogon gerardii seedlings were grown with nine different AMF communities. The communities consisted of 0, 10, or 20 spores of Glomus etunicatum and 0, 10, or 20 spores of Glomus intraradices in all possible combinations. Spores were produced by fungal cultures originating on A. gerardii in a serpentine plant community; seeds of A. gerardii were collected at the same site. The experiment was performed in the greenhouse using a mixture of sterilized serpentine soil and sand to which naturally occurring non-mycorrhizal microbes were added. There was no difference in root AMF colonization rates between single species communities of either G. etunicatum or G. intraradices, but G. intraradices enhanced plant growth and G. etunicatum did not. However, plants grew larger with some combinations of G.␣intraradices plus G. etunicatum than with the same quantity of G. intraradices alone. These results suggest the potential for niche complementarity in the mycorrhizal fungi. That G. etunicatum only increased plant growth in the presence of G. intraradices could be illustrative of why AMF that appear to be parasitic or benign when examined in isolation are maintained within multi-species mycorrhizal communities in nature.  相似文献   

12.

Aims

The aim was to quantify the nitrogen (N) transferred via the extra-radical mycelium of the arbuscular mycorrhizal fungus Glomus intraradices from both a dead host and a dead non-host donor root to a receiver tomato plant. The effect of a physical disruption of the soil containing donor plant roots and fungal mycelium on the effectiveness of N transfer was also examined.

Methods

The root systems of the donor (wild type tomato plants or the mycorrhiza-defective rmc mutant tomato) and the receiver plants were separated by a 30 μm mesh, penetrable by hyphae but not by the roots. Both donor genotypes produced a similar quantity of biomass and had a similar nutrient status. Two weeks after the supply of 15?N to a split-root part of donor plants, the shoots were removed to kill the plants. The quantity of N transferred from the dead roots into the receiver plants was measured after a further 2 weeks.

Results

Up to 10.6 % of donor-root 15N was recovered in the receiver plants when inoculated with the arbuscular mycorrhizal fungus (AMF). The quantity of 15N derived from the mycorrhizal wild type roots clearly exceeded that from the only weakly surface-colonised rmc roots. Hyphal length in the donor rmc root compartments was only about half that in the wild type compartments. The disruption of the soil led to a significantly increased AMF-mediated transfer of N to the receiver plants.

Conclusions

The transfer of N from dead roots can be enhanced by AMF, especially when the donor roots have been formerly colonised by AMF. The transfer can be further increased with higher hyphae length densities, and the present data also suggest that a direct link between receiver mycelium and internal fungal structures in dead roots may in addition facilitate N transfer. The mechanical disruption of soil containing dead roots may increase the subsequent availability of nutrients, thus promoting mycorrhizal N uptake. When associated with a living plant, the external mycelium of G. intraradices is readily able to re-establish itself in the soil following disruption and functions as a transfer vessel.  相似文献   

13.
Arbuscular mycorrhizal fungi are able to alleviate the stress for plants caused by heavy metal contamination of soil. To analyze the molecular response of arbuscular mycorrhizal fungi to these pollutants, a subtractive cDNA library was constructed using RNA from Glomus intraradices extraradical hyphae of a root organ culture treated with a mixture of Cd, Zn, and Cu. Screening by reverse Northern blot analysis indicated that, among 308 clones, 17% correspond to genes up-regulated by heavy metals. Sequence analysis of part of the clones resulted, amongst others, in the identification of six genes putatively coding for glutathione S-transferases belonging to two different classes of these enzymes. Expression analyses indicated that the genes are differentially expressed during fungal development and that their RNA accumulation dramatically increases in extraradical hyphae grown in a heavy metal-containing solution.  相似文献   

14.
Drew  E.A.  Murray  R.S.  Smith  S.E.  Jakobsen  I. 《Plant and Soil》2003,251(1):105-114
Research on nutrient acquisition by symbiotic arbuscular mycorrhizal (AM) fungi has mainly focused on the root–fungus interface and less attention has been given to the growth and functioning of external hyphae in the bulk soil. The growth and function of external hyphae may be affected by unfavourable soil environments, such as compacted soils in which pores may be narrow. The effects of pore size on the growth of two AM fungi (Glomus intraradices and G. mosseae) and their ability to transport 33P from the bulk soil to the host were investigated. Trifolium subterraneum L. plants were grown individually in `single arm cross-pots' with and without AM fungi. The side arm was separated from the main compartment by nylon mesh to prevent root penetration. It contained three zones: 5 mm of soil:sand mix (HC1); 25 mm of media treatment (HC2); and 20 mm of 33P-labelled soil (HC3). There were four media treatments; soil and three types of quartz sand with most common continuous pore diameters of 100, 38 and 26 m. AM plants had similar growth and total P uptake in all treatments. However, plants grown with G. intraradices contained almost three times more 33P than those grown with G. mosseae, indicating G. intraradices obtained a greater proportion of P at a distance from the host roots. Differences in P acquisition were not correlated with production of external hyphae in the four media zones and changes in sand pore size did not affect the ability of the fungi studied to acquire P at a distance from the host roots. Production of external hyphae in HC2 was influenced by fungal species and media treatment. Both fungi produced maximum amounts of external hyphae in the soil medium. Sand pore size affected growth of G. intraradices (but not G. mosseae) and hyphal diameter distributions of both fungi. The results suggest that not only are G. mosseae and G. intraradices functionally complementary in terms of spatial phosphorus acquisition, they are also capable of altering their morphology in response to the soil environment.  相似文献   

15.
It is currently accepted that, along with nutrients, arbuscular mycorrhizal (AM) fungi also transport water to their host plant. However, the quantity of water supplied and its significance for plant water relations remain controversial. The objective of this work was to evaluate and compare the ability of six AM fungi to alter rates of root water uptake under drought stress conditions. Soil drying rates of uninoculated control plants of comparable size and nutritional status and mycorrhizal plants were recorded daily. Lactuca sativa plants colonized by Glomus coronatum , G. intraradices , G. claroideum and G. mosseae depleted soil water to a higher extent than comparably sized uninoculated control plants or plants colonized by G. constrictum or G. geosporum . The differences ranged from 0.6% volumetric soil moisture for G. mosseae -colonized plants to 0.95% volumetric soil moisture for G. intraradices -colonized plants. These differences in soil moisture were equivalent to 3–4.75 ml plant−1 day−1, respectively, and could not be ascribed to differences in plant size, but to the activity of AM fungi. The AM fungi tested in this study differed in their effectiveness to enhance plant water uptake from soil. This ability seems to be related to the amount of external mycelium produced by each AM fungus and to the frequency of root colonization in terms of live and active fungal structures.  相似文献   

16.
The influence of anthracene, a low molecular weight polycyclic aromatic hydrocarbon (PAH), on chicory root colonization by Glomus intraradices and the effect of the root colonization on PAH degradation were investigated in vitro. The fungus presented a reduced development of extraradical mycelium and a decrease in sporulation, root colonization, and spore germination when exposed to anthracene. Mycorrhization improved the growth of the roots in the medium supplemented containing 140 mg l−1 anthracene, suggesting a positive contribution of G. intraradices to the PAH tolerance of roots. Anthracene disappearance from the culture medium was quantified; results suggested that nonmycorrhizal chicory roots growing in vitro were able to contribute to anthracene dissipation, and in addition, that mycorrhization significantly enhanced anthracene dissipation. These monoxenic experiments demonstrated a positive contribution of the symbiotic association to anthracene dissipation in the absence of other microorganisms. In addition to anthracene dissipation, intracellular accumulation of anthracene was detected in lipid bodies of plant cells and fungal hyphae, indicating intracellular storage capacity of the pollutant by the roots and the mycorrhizal fungus.  相似文献   

17.
We studied the role of modification in root exudation induced by colonization with Glomus intraradices and Glomus mosseae in the growth of Phytophthora nicotianae in tomato roots. Plants were grown in a compartmentalized plant growth system and were either inoculated with the AM fungi or received exudates from mycorrhizal plants, with the corresponding controls. Three weeks after planting, the plants were inoculated or not with P. nicotianae growing from an adjacent compartment. At harvest, P. nicotianae biomass was significantly reduced in roots colonized with G. intraradices or G. mosseae in comparison to non-colonized roots. Conversely, pathogen biomass was similar in non-colonized roots supplied with exudates collected from mycorrhizal or non-mycorrhizal roots, or with water. We cannot rule out that a mycorrhiza-mediated modification in root exudation may take place, but our results did not support that a change in pathogen chemotactic responses to host root exudates may be involved in the inhibition of P. nicotianae.  相似文献   

18.
This study examined the uptake of nitrogen by external hyphae of an arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck &; Smith) and its impact on physiological responses in maize plants subjected to well-watered or drought-stressed conditions. Plants were grown in compartmented boxes divided by a nylon mesh (40?μm) into a root compartment and a hyphal compartment. Maize plants (Zea mays cv. 'Tuxpeño sequia' selection cycle C0) were exposed to 2 weeks of drought 56 days after sowing. A ^[15]N tracer was applied as K^[15]NO_[3] to the hyphal compartment at a distance of 5?cm from the root compartment. Root and shoot samples were then analyzed for ^[15]N atom % excess (APE), glutamine synthetase (GS) activity, protein concentration and nutritional status. Evapotranspiration rate and stomatal resistance were monitored daily to determine the degree of drought stress. The APE values for AM shoots and roots were 32% and 33% higher than non-AM shoots and roots, respectively, under drought conditions. This provides clear evidence that the external mycelium of AM fungus transports considerable amounts of ^[15]NO_[3]^[– ]to the host plant under drought conditions. Drought-stressed AM roots had 28% higher GS activity, possibly as a consequence of higher hyphal acquisition of NO_[3]^[–] ions. Mycorrhizal colonization significantly increased the host plant P status regardless of soil moisture regime. In addition, the N status of drought-stressed AM shoots and roots was slightly higher than stressed non-AM shoots and roots. The improved nutritional status may assist AM plants to exploit available soil moisture more efficiently and to maintain higher leaf relative water content under moderate drought conditions.  相似文献   

19.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   

20.
Agrobacterium radiobacter influenced the development of mycorrhizal infection, length of external mycelium and metabolic activity of the mycelium in a hydroponic culture system, with maize as a host plant. Infection caused byGlomus fasciculatum, and metabolic activity of the external mycelium ofG. fasciculatum andG. etunicatum, was stimulated by bacterial inoculation. The results underline the importance of the soil saprophytic microflora for development and activity of the extraradical phase of vesicular-arbuscular mycorrhizal fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号