首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Although protein turnover in skeletal muscle is increased in hyperthyroidism and decreased in hypothyroidism, a deficient protein intake tends to increase serum T3 (tri-iodothyronine) while decreasing muscle protein turnover. To determine whether this diet-induced decrease in protein turnover can occur independent of thyroid status, we have examined muscle protein turnover and nitrogen conservation in hyperthyroid rats fed on a protein-free diet. After inducing hyperthyroidism by giving 20 micrograms of T3/100g body wt. daily for 7 days, groups of euthyroid and hyperthyroid animals were divided into subgroups fed on basal and protein-free diets. Muscle protein turnover was measured by N tau-methylhistidine excretion and [14C]tyrosine infusion. Urinary nitrogen output of euthyroid and hyperthyroid animals fed on the protein-free diet was also measured. Although hyperthyroidism increased the baseline rates of muscle protein synthesis and degradation, it did not prevent a decrease in these values in response to protein depletion. Furthermore, hyperthyroid rats showed greatly decreased nitrogen excretion in response to the protein-free diet, although not to values for euthyroid rats. These findings suggest that protein depletion made the experimental animals less responsive to the protein-catabolic effects of T3.  相似文献   

2.
A diet containing adequate amounts of protein rapidly suppresses myofibrillar protein degradation in rats and mice. This study determined whether dietary amino acids inhibit postprandial protein degradation in rat skeletal muscle. When rats fed on a 20% casein diet for 1 h after 18 h starvation, the rate of myofibrillar protein degradation measured by N(tau)-methylhistidine release from the isolated extensor digitorum longus muscle was significantly (p < 0.05) decreased at 4 h after refeeding. A diet containing an amino acid mixture which is the same composition as casein also reduced myofibrillar protein degradation at 4 h after refeeding (p < 0.05). An essential amino acid mixture (15.1%, corresponding to casein composition) and a leucine (2.9%) diets reduced the rate of myofibrillar protein degradation after refeeding (p < 0.05), whereas a protein free diet did not. Administration of leucine alone (0.135 g/100 g body weight) by a feeding tube induced a decrease in the rate of myofibrillar protein degradation at 2 h after administration (p < 0.05), whereas the serum insulin concentration was constant after leucine administration. These results suggested that leucine is one of regulating factors of myofibrillar protein degradation after refeeding of a protein diet.  相似文献   

3.
Rates of growth and protein turnover in the breast muscle of young chicks were measured in order to assess the roles of protein synthesis and degradation in the regulation of muscle mass. Rates of protein synthesis were measured in vivo by injecting a massive dose of L-[1-14C]valine, and rates of protein degradation were estimated as the difference between the synthesis rate and the growth rate of muscle protein. In chicks fed on a control diet for up to 7 weeks of age, the fractional rate of synthesis decreased from 1 to 2 weeks of age and then changed insignificantly from 2 to 7 weeks of age, whereas DNA activity was constant for 1 to 7 weeks. When 4-week-old chicks were fed on a protein-free diet for 17 days, the total amount of breast-muscle protein synthesized and degraded per day and the amount of protein synthesized per unit of DNA decreased. Protein was lost owing to a greater decrease in the rate of protein synthesis, as a result of the loss of RNA and a lowered RNA activity. When depleted chicks were re-fed the control diet, rapid growth was achieved by a doubling of the fractional synthesis rate by 2 days. Initially, this was a result of increased RNA activity; by 5 days, the RNA/DNA ratio also increased. There was no evidence of a decrease in the fractional degradation rate during re-feeding. These results indicate that dietary-protein depletion and repletion cause changes in breast-muscle protein mass primarily through changes in the rate of protein synthesis.  相似文献   

4.
The immediate response of protein degradation to food intake and the factors for its regulation in rat skeletal muscle were examined. The concentration of N τ-methylhistidine (MeHis) in serum and the rates of MeHis release from isolated soleus and extensor digitorum longus muscles were reduced in the period from 3 to 6h after refeeding, indicating that the rate of myofibrillar protein degradation in the rat decreased immediately after refeeding. Changes in the serum concentration of insulin and corticosterone were not synchronized with those in the myofibrillar protein degradation. When rats were fed on a protein-free diet, no reduction of serum MeHis concentration or of the rate of MeHis release from isolated muscles after refeeding was apparent. Furthermore, there was a tendency toward suppressing myofibrillar protein degradation with a higher protein content of the diet. These results suggest that the suppression of myofibrillar protein degradation by food intake was regulated by dietary proteins.  相似文献   

5.
Nutritional supplementation with some amino acids may influence host??s responses and also certain mechanism involved in tumor progression. It is known that exercise influences body weight and muscle composition. Previous findings from our group have shown that leucine has beneficial effects on protein composition in cachectic rat model as the Walker 256 tumor. The main purpose of this study was to analyze the effects of light exercise and leucine and/or glutamine-rich diet in body composition and skeletal muscle protein synthesis and degradation in young tumor-bearing rats. Walker tumor-bearing rats were subjected to light aerobic exercise (swimming 30?min/day) and fed a leucine-rich (3%) and/or glutamine-rich (4%) diet for 10?days and compared to healthy young rats. The carcasses were analyzed as total water and fat body content and lean body mass. The gastrocnemious muscles were isolated and used for determination of total protein synthesis and degradation. The chemical body composition changed with tumor growth, increasing body water and reducing body fat content and total body nitrogen. After tumor growth, the muscle protein metabolism was impaired, showing that the muscle protein synthesis was also reduced and the protein degradation process was increased in the gastrocnemius muscle of exercised rats. Although short-term exercise (10?days) alone did not produce beneficial effects that would reduce tumor damage, host protein metabolism was improved when exercise was combined with a leucine-rich diet. Only total carcass nitrogen and protein were recovered by a glutamine-rich diet. Exercise, in combination with an amino acid-rich diet, in particular, leucine, had effects beyond reducing tumoral weight such as improving protein turnover and carcass nitrogen content in the tumor-bearing host.  相似文献   

6.
Rats were fed a protein-free diet. After 9 weeks the animals' weight decreased to about 50% of the original. The liver weight was also decreased to about half, and most interestingly the average size of the liver cells was reduced about 50%. Liver protein synthesis was approximately 75% of controls tested in an "in vitro" system. Polysomes were found disaggregated in livers of rats on protein-free diet. This was not due to a reduced content or translatability of mRNA. eIF-2 partially purified from livers of rats on protein-free diet had the same activity as that from controls. The decrease of ATP, ADP and AMP in livers of rats on protein-free diet (19%, 42% and 58% respectively) may be responsible for the decreased rate of initiation of protein synthesis. Proteolysis in liver cytosol from rats on protein-free diet was 50% higher than in controls mostly due to lysosomal proteolysis.  相似文献   

7.
1. The influence of hydrocortisone, insulin and diet on the size distribution of ribosomes in a post-mitochondrial supernatant prepared from rat skeletal muscle was studied by sedimentation analysis with a linear 15-40% (w/v) sucrose gradient. 2. Within 4hr. after the injection of 5mg. of hydrocortisone to well-nourished rats, a decrease in the yield per g. of muscle and proportion of total RNA due to polyribosomes was observed. Similar results were obtained in rats given a protein-free diet for 3 days before administration of the hormone. 3. Insulin injection increased the yield and proportion of polyribosomes within 2hr. and decreased the proportion of the lighter ribosomal aggregates. Similar results were noted in rats given a protein-free diet for 3 days before injection. A protein-free diet given for 3 days decreased the yield and proportion of polyribosomes. Insulin did not increase the yield of polyribosomes if rats were starved for 52hr. before injection, but decreased the yield and proportion of the lighter ribosome species. 4. A 52hr. period of starvation or 2,4-dinitrophenol (15mg./kg. body wt.) given 1hr. before the rats were killed resulted in a decreased yield and proportion of polyribosomes, and, within 6hr. of re-feeding the rats with protein-free diets, an increased concentration of polyribosomes was noted. 5. The effects of a protein-free diet, hydrocortisone and insulin on the sedimentation of muscle ribosomes were found to be in accord with their net effects on muscle protein synthesis.  相似文献   

8.
Circadian variations in liver protein synthesis were were assessed in control rats fed a mixed 10% protein diet and in rats fed proteins as a separate meal either at 09:00 (SF 09) or at 21:00 (SF 21) and provided with a protein-free diet ad libitum. Protein synthesis was measured by incorporation of labelled leucine over a short period of time (15 min) at time-points regularly spaced over 24 h. In controls, the circadian variations observed were of moderate amplitude (from 2.75 mg/h per g at 09:00 to 5.77 mg/h per g at 06:00) correlated with increased protein and RNA contents of the liver. In separately fed animals ingestion of the protein meal triggered a 300% increase in protein synthesis within 1 h while the feeding pattern was unaltered. In the SF 09 group, high synthetic activity was not followed by an increase of hepatic protein content while hepatic urea concentrations were sharply increased and glucogenic amino acid pools were greatly depleted. It is suggested that the high influx of amino acids consecutive to the absorption of the dietary proteins is the key factor stimulating protein synthesis, while synchronisation with the energetic metabolism controls the degree of degradation. The possible involvement of variations in the insulin to glucagon ratio is discussed.  相似文献   

9.
The time-course of changes in total amount of proteins of sarcoplasmic, myofibrillar and stromal fractions in muscle of the rats fed a protein-free diet for 8, 16, 24 and 32 days, together with the referential data of those changes in the rats fed a protein-free diet up to time of death and a 60% casein diet for 12 days was determined respectively. The results were as follows: (1) The sarcoplasmic and the myofibrillar fractions decreased much more than the stromal fraction in the earlier stages of protein depletion following the same pattern as seen in reserve proteins. (2) The sarcoplasmic fraction decreased slightly more than the myofibrillar fraction as early as 8 days of the depletion, but the relative proportion between these two fractions was thereafter almost the same as that of the standard diet group. (3) In rats fed a 60% casein diet, the sarcoplasmic fraction increased markedly than the others.  相似文献   

10.
A low-protein diet supplemented with ketoacids maintains nutritional status in patients with diabetic nephropathy. The activation of autophagy has been shown in the skeletal muscle of diabetic and uremic rats. This study aimed to determine whether a low-protein diet supplemented with ketoacids improves muscle atrophy and decreases the increased autophagy observed in rats with type 2 diabetic nephropathy. In this study, 24-week-old Goto-Kakizaki male rats were randomly divided into groups that received either a normal protein diet (NPD group), a low-protein diet (LPD group) or a low-protein diet supplemented with ketoacids (LPD+KA group) for 24 weeks. Age- and weight-matched Wistar rats served as control animals and received a normal protein diet (control group). We found that protein restriction attenuated proteinuria and decreased blood urea nitrogen and serum creatinine levels. Compared with the NPD and LPD groups, the LPD+KA group showed a delay in body weight loss, an attenuation in soleus muscle mass loss and a decrease of the mean cross-sectional area of soleus muscle fibers. The mRNA and protein expression of autophagy-related genes, such as Beclin-1, LC3B, Bnip3, p62 and Cathepsin L, were increased in the soleus muscle of GK rats fed with NPD compared to Wistar rats. Importantly, LPD resulted in a slight reduction in the expression of autophagy-related genes; however, these differences were not statistically significant. In addition, LPD+KA abolished the upregulation of autophagy-related gene expression. Furthermore, the activation of autophagy in the NPD and LPD groups was confirmed by the appearance of autophagosomes or autolysosomes using electron microscopy, when compared with the Control and LPD+KA groups. Our results showed that LPD+KA abolished the activation of autophagy in skeletal muscle and decreased muscle loss in rats with type 2 diabetic nephropathy.  相似文献   

11.

Background

Protein-energy malnutrition (PEM) can lead to growth hormone (GH) resistance. Leucine supplementation diets have been shown to increase protein synthesis in muscles. Our study aimed at investigating if long-term leucine supplementation could modulate GH-insulin-like growth factor (IGF)-1 system function and mammalian target of rapamycin (mTOR)-related signal transduction in skeletal muscles in a rat model of severe malnutrition.

Methodology/Principal Findings

Male Sprague-Dawley rats (n = 50; weight, 302 ± 5 g) were divided into 5 treatment groups, including 2 control groups (a normal control group that was fed chow and ad libitum water [CON, n = 10] and a malnourished control group [MC, n = 10] that was fed a 50% chow diet). After undergoing a weight loss stage for 4 weeks, rats received either the chow diet (MC-CON, n = 10), the chow diet supplemented with low-dose leucine (MC-L, n = 10), or the chow diet supplemented with high-dose leucine (MC-H, n = 10) for 2 weeks. The muscle masses of the gastrocnemius, soleus, and extensor digitorum longus were significantly reduced in the MC group. Re-feeding increased muscle mass, especially in the MC-L and MC-H groups. In the MC group, serum IGF-1, IGF-binding protein (IGFBP)-3, and hepatic growth hormone receptor (GHR) levels were significantly decreased and phosphorylation of the downstream anabolic signaling effectors protein kinase B (Akt), mTOR, and ribosomal protein S6 kinase 1 (S6K1) were significantly lower than in other groups. However, serum IGF-1 and IGF binding protein (IGFBP)-3 concentrations and hepatic growth hormone receptor (GHR) levels were significantly higher in the MC-L and MC-H groups than in the MC-CON group, and serum IGFBP-1 levels was significantly reduced in the MC-L and MC-H groups. These changes were consistent with those observed for hepatic mRNA expression levels. Phosphorylation of the downstream anabolic signaling effectors Akt, mTOR, and S6K1 were also significantly higher in the MC-L and MC-H groups than in the MC-CON group.

Conclusion/Significance

Our data are the first to demonstrate that long-term supplementation with leucine improved acquired growth hormone resistance in rats with protein-energy malnutrition. Leucine might promote skeletal muscle protein synthesis by regulating downstream anabolic signaling transduction.  相似文献   

12.
In eukaryotic cells, amino acid depletion reduces translation by a mechanism involving phosphorylation of eukaryotic initiation factor-2 (eIF2). Herein we describe that mice lacking the eIF2 kinase, general control nonderepressible 2 (GCN2) fail to alter the phosphorylation of this initiation factor in liver, and are moribund in response to dietary leucine restriction. Wild-type (GCN2(+/+)) and two strains of GCN2 null (GCN2(-/-)) mice were provided a nutritionally complete diet or a diet devoid of leucine or glycine for 1 h or 6 days. In wild-type mice, dietary leucine restriction resulted in loss of body weight and liver mass, yet mice remained healthy. In contrast, a significant proportion of GCN2(-/-) mice died within 6 days of the leucine-deficient diet. Protein synthesis in wild-type livers was decreased concomitant with increased phosphorylation of eIF2 and decreased phosphorylation of 4E-BP1 and S6K1, translation regulators controlled nutritionally by mammalian target of rapamycin. Whereas translation in the liver was decreased independent of GCN2 activity in mice fed a leucine-free diet for 1 h, protein synthesis in GCN2(-/-) mice at day 6 was enhanced to levels measured in mice fed the complete diet. Interestingly, in addition to a block in eIF2 phosphorylation, phosphorylation of 4E-BP1 and S6K1 was not decreased in GCN2(-/-) mice deprived of leucine for 6 days. This suggests that GCN2 activity can also contribute to nutritional regulation of the mammalian target of rapamycin pathway. As a result of the absence of these translation inhibitory signals, liver weights were preserved and instead, skeletal muscle mass was reduced in GCN2(-/-) mice fed a leucine-free diet. This study indicates that loss of GCN2 eIF2 kinase activity shifts the normal maintenance of protein mass away from skeletal muscle to provide substrate for continued hepatic translation.  相似文献   

13.
Loss of muscle mass usually characterizes different pathologies (sepsis, cancer, trauma) and also occurs during normal aging. One reason for muscle wasting relates to a decrease in food intake. This study addressed the role of leucine as a regulator of protein breakdown in mouse C2C12 myotubes and aimed to determine which cellular responses regulate the process. Determination of the rate of protein breakdown indicated that leucine is one key regulator of this process in myotubes because starvation for this amino acid is responsible for 30-40% of the total increase generated by total amino acid starvation. Leucine restriction rapidly accelerates the rate of protein breakdown (+11 to 15% (p < 0.001) after 1 h of starvation) in a dose-dependent manner. By using various inhibitors, evidence is provided that acceleration of protein catabolism results mainly from an induction of autophagy, activation of lysosome-dependent proteolysis, without modification of mRNA levels encoding the lysosomal cathepsins B, L, or D. Those results suggest that autophagy is an essential cellular response for increasing protein breakdown in muscle following food deprivation. Induction of autophagy precedes a decrease in global protein synthesis (-20% to -30% (p < 0.001)) that occurs after 3 h of leucine starvation. Inhibition of the mammalian target of rapamycin (mTOR) activity does not abolish the effect of leucine starvation and the level of phosphorylated ribosomal S6 protein is not affected by leucine withdrawal. These latter data provide clear evidence that the mTOR signaling pathway is not involved in the mediation of leucine effects on both protein synthesis and degradation in C2C12 myotubes.  相似文献   

14.
The absorption of lysine is facilitated by leucine, but there is no information regarding the effect of crude protein, lysine and leucine levels on the expression of cationic amino acid transporters in pigs. Therefore, an experiment was conducted with 20 pigs (14.9 +/- 0.62 kg initial body weight) to evaluate the effect of two protein levels, and the content of lysine, threonine, methionine and leucine in low crude protein diets on the expression of b(0,+) and CAT-1 mRNA in jejunum, Longissimus dorsi and Semitendinosus muscles and serum concentration of amino acids. Treatments were as follows: (i) wheat-soybean meal diet, 20% crude protein (Control); (ii) wheat diet deficient in lysine, threonine and methionine (Basal diet); (iii) Basal diet plus 0.70% L-lysine, 0.27% L-threonine, 0.10% DL-methionine (Diet LTM); (iv) Diet LTM plus 0.80% L-leucine (Diet LTM + Leu). Despite the Basal diet, all diets were formulated to meet the requirements of lysine, threonine and methionine; Diet LTM + Leu supplied 60% excess of leucine. The addition of lysine, threonine and methionine in Diet LTM increased the expression of b(0,+) in jejunum and CAT-1 in the Semitendinosus and Longissiums muscles and decreased CAT-1 in jejunum; the serum concentration of lysine was also increased (p < 0.01). Further addition of L-leucine (Diet LTM + Leu) decreased the b(0,+) expression in jejunum and CAT-1 in the Longissimus dorsi muscle (p < 0.05), increased the serum concentration ofleucine and arginine and decreased the concentration of isoleucine (p < 0.05). Pigs fed the Control diet expressed less b(0,+) in jejunum, and CAT-1 in the Semitendinosus and Longissiums muscles expressed more CAT-1 in jejunum (p < 0.05) and had lower serum concentration ofisoleucine, leucine and valine (p < 0.05), but higher lysine concentrations (p < 0.01) than those fed Diet LTM. These results indicated that both, the level and the source of dietary amino acids, affect the expression of cationic amino acid transporters in pigs fed wheat-based diets.  相似文献   

15.

Background

Cancer-cachexia induces a variety of metabolic disorders of protein turnover and is more pronounced when associated with pregnancy. Tumour-bearing pregnant rats have impaired protein balance, which decreases protein synthesis and increases muscle breakdown. Because branched-chain amino acids, especially leucine, stimulate protein synthesis, we investigated the effect of a leucine-rich diet on protein metabolism in the foetal gastrocnemius muscles of tumour-bearing pregnant rats.

Methods

Foetuses of pregnant rats with or without Walker 256 tumours were divided into six groups. During the 20 days of the experiment, the pregnant groups were fed with either a control diet (C, control rats; W, tumour-bearing rats; Cp, rats pair-fed the same normoprotein-diet as the W group) or with a leucine-rich diet (L, leucine rats; LW, leucine tumour-bearing rats; and Lp, rats pair-fed the same leucine-rich diet as the LW group). After the mothers were sacrificed, the foetal gastrocnemius muscle samples were resected, and the protein synthesis and degradation and tissue chymotrypsin-like, cathepsin and calpain enzyme activities were assayed. The muscle oxidative enzymes (catalase, glutathione-S-transferase and superoxide dismutase), alkaline phosphatase enzyme activities and lipid peroxidation (malondialdehyde) were also measured.

Results

Tumour growth led to a reduction in foetal weight associated with decreased serum protein, albumin and glucose levels and low haematocrit in the foetuses of the W group, whereas in the LW foetuses, these changes were less pronounced. Muscle protein synthesis (measured by L-[3H]-phenylalanine incorporation) was reduced in the W foetuses but was restored in the LW group. Protein breakdown (as assessed by tyrosine release) was enhanced in the L and W groups, but chymotrypsin-like activity increased only in group W and tended toward an increase in the LW foetuses. The activity of cathepsin H was significantly higher in the W group foetuses, but the proteolytic calcium-dependent pathway showed similar enzyme activity. In parallel, an intense oxidative stress process was observed only in the group W foetuses.

Conclusions

These data suggested that the proteasomal and lysosomal proteolytic pathways and oxidative stress are likely to participate in the process of foetal muscle catabolism of Walker’s tumour-bearing pregnant rats. The present work shows that foetal muscle can be protected by supplementation with a leucine-rich diet.  相似文献   

16.
Polyunsaturated fatty acids (PUFAs) are essential dietary components. They are not only used for energy, but also act as signaling molecules. The delta-6 desaturase (D6D) enzyme, encoded by the FADS2 gene, is one of two rate limiting enzymes that convert the PUFA precursors – α-linolenic (n-3) and linoleic acid (n-6) to their respective metabolites. Alterations in the D6D enzyme activity alters fatty acid profiles and are associated with metabolic and inflammatory diseases including cardiovascular disease and type 2 diabetes. Omega-3 PUFAs, specifically its constituent fatty acids DHA and EPA, are known for their anti-inflammatory ability and are also beneficial in the prevention of skeletal muscle wasting, however the mechanism for muscle preservation is not well understood. Moreover, little is known of the effects of altering the n-6/n-3 ratio in the context of a high-fat diet, which is known to downregulate protein synthesis. Twenty C57BL6 male mice were fed a high-fat lard (HFL, 45% fat (mostly lard), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 13:1) diet for 6 weeks. Mice were then divided into 4 groups (n = 5 per group): HFL– , high-fat oil– (HFO, 45% fat (mostly Menhaden oil), 35% carbohydrate and 20% protein, n-6:n-3 PUFA, 1:3), HFL+ (HFL diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day), and HFO+ (HFO diet plus an orally administered FADS2 inhibitor, 100 mg/kg/day). After 2 weeks on their respective diets and treatments, animals were sacrificed and gastrocnemius muscle harvested. Protein turnover signaling were analyzed via Western Blot. 4-EBP1 and ribosomal protein S6 expression were measured. A two-way ANOVA revealed no significant change in the phosphorylation of both 4EBP-1 and ribosomal protein S6 with diet or inhibitor. There was a significant reduction in STAT3 phosphorylation with the inhibition of FADS2 (p = 0.03). Additionally, we measured markers of protein degradation through levels of FOXO phosphorylation, ubiquitin, and LC3B expression; there was a trend towards increased phosphorylation of FOXO (p = 0.08) and ubiquitinated proteins (p = 0.05) with FADS2 inhibition. LC3B expression, a marker of autophagy, was significantly higher in the HFL plus FADS2 inhibition group from all other comparisons. Lastly, we analyzed activation of mitochondrial biogenesis which is closely linked with protein synthesis through PGC1-α and Cytochrome-C expression, however no significant differences were associated with either marker across all groups. Collectively, these data suggest that the protective effects of muscle mass by omega-3 fatty acids are from inhibition of protein degradation. Our aim was to determine the role of PUFA metabolites, DHA and EPA, in skeletal muscle protein turnover and assess the effects of n-3s independently. We observed that by inhibiting the FADS2 enzyme, the protective effect of n-3s on protein synthesis and proliferation was lost; concomitantly, protein degradation was increased with FADS2 inhibition regardless of diet.  相似文献   

17.
Somatotropin (ST) administration enhances protein deposition in well-nourished, growing animals. To determine whether the anabolic effect is due to an increase in protein synthesis or a decrease in proteolysis, pair-fed, weight-matched ( approximately 20 kg) growing swine were treated with porcine ST (150 microg. kg(-1). day(-1), n = 6) or diluent (n = 6) for 7 days. Whole body leucine appearance (R(a)), nonoxidative leucine disposal (NOLD), urea production, and leucine oxidation, as well as tissue protein synthesis (K(s)), were determined in the fed steady state using primed continuous infusions of [(13)C]leucine, [(13)C]bicarbonate, and [(15)N(2)]urea. ST treatment increased the efficiency with which the diet was used for growth. ST treatment also increased plasma insulin-like growth factor I (+100%) and insulin (+125%) concentrations and decreased plasma urea nitrogen concentrations (-53%). ST-treated pigs had lower leucine R(a) (-33%), leucine oxidation (-63%), and urea production (-70%). However, ST treatment altered neither NOLD nor K(s) in the longissimus dorsi, semitendinosus, or gastrocnemius muscles, liver, or jejunum. The results suggest that in the fed state, ST treatment of growing swine increases protein deposition primarily through a suppression of protein degradation and amino acid catabolism rather than a stimulation of protein synthesis.  相似文献   

18.
A study was made on protein metabolism and hormonal changes following birth in newborn lambs fed amino acids alone or in combination with lactose. Eight newborn lambs taken from their mother immediately after birth were fed hourly for 8 h, either with a solution of peptides and free amino acids obtained by mild hydrolysis of whey proteins (4 lambs; diet AP) or with the same solution + lactose (4 lambs; diet APL). L-[4,5-3H] leucine was continuously perfused into a jugular vein for 6 h when the lambs were 2 h 30 min old. Plasma glucose and insulin levels increased after birth in APL lambs whereas they decreased in the AP; these differences were significantly different. Plasma cortisol levels remained unchanged throughout the experiment. Free essential amino acid levels did not vary when lambs were older than 4.5 h; they depended on the corresponding amino acid intakes. Plasma free threonine, valine, isoleucine, leucine, tyrosine and lysine were lower in APL than in AP lambs. The plasma leucine irreversible loss and leucine oxidation were higher in AP than in APL lambs. The plasma flux of leucine from whole body protein breakdown was lower in APL than in AP lambs inasmuch as the plasma flux of dietary leucine may be estimated by the amounts of leucine ingested in both cases. No significant difference was found for the fractional synthesis rates of tissue proteins such as liver, skin, skeletal muscle, lung, brain and whole body. These rates for skin, muscle and whole body were close to those previously measured in colostrum fed lambs. The increase in whole body protein accretion resulting from lactose feeding in combination with amino acids seemed to result from a decreased protein breakdown that could be mediated by the insulin response.  相似文献   

19.
The effects of leucine, its metabolites, and the 2-oxo acids of valine and isoleucine on protein synthesis and degradation in incubated limb muscles of immature and adult rats were tested. Leucine stimulated protein synthesis but did not reduce proteolysis when leucine transamination was inhibited. 4-Methyl-2-oxopentanoate at concentrations as low as 0.25 mM inhibited protein degradation but did not change protein synthesis. The 2-oxo acids of valine and isoleucine did not change protein synthesis or degradation even at concentrations as high as 5 mM. 3-Methylvalerate, the irreversibly decarboxylated product of 4-methyl-2-oxopentanoate, decreased protein degradation at concentrations greater than or equal to 1 mM. This was not due to inhibition of 4-methyl-2-oxopentanoate catabolism, because 0.5 mM-3-methylvalerate did not suppress proteolysis, even though it inhibited leucine decarboxylation by 30%; higher concentrations of 3-methylvalerate decreased proteolysis progressively without inhibiting leucine decarboxylation further. During incubation with [1-14C]- and [U-14C]-leucine, it was found that products of leucine catabolism formed subsequent to the decarboxylation of 4-methyl-2-oxopentanoate accumulated intracellularly. This pattern was not seen during incubation with radiolabelled valine. Thus, the effect of leucine on muscle proteolysis requires transamination to 4-methyl-2-oxopentanoate. The inhibition of muscle protein degradation by leucine is most sensitive to, but not specific for, its 2-oxo acid, 4-methyl-2-oxopentanoate.  相似文献   

20.
A model of leucine metabolism in the hind-limb muscles of the milk-fed lamb was developed which permitted simultaneous estimation of the rates of protein synthesis (Ks, days-1), degradation (Kd) and therefore gain (Kg) of muscle in vivo. The conclusions drawn from the model were: the rate of protein synthesis in muscle was related to uptake of leucine; the rate of degradation of protein was related to leucine output, as leucine, or its corresponding oxo acid, 4-methyl-2-oxopentanoic acid, or CO2. These findings support findings drawn from a wide range of studies in vitro. There was no correlation between rate of protein synthesis and rate of protein degradation, which suggests that the method can allow independent estimates of each. Estimates of protein synthesis obtained from the model (of leucine metabolism in muscle) were compared with those obtained simultaneously by constant infusion of radioisotope and analysis of incorporation into tissue. There were no significant differences between the mean values obtained for synthesis (Ks), gain (Kg) and degradation (Kd) by either method (Ks 0.051 +/- 0.002, 0.046 +/- 0.007; Kg 0.016 +/- 0.002, 0.004 +/- 0.008; Kd 0.035 +/- 0.004, 0.041 +/- 0.008 day-1, respectively, for tissue analysis and the model). However, Ks obtained from the model was significantly and positively correlated with uptake of leucine from plasma, whereas Ks obtained from tissue analysis was not.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号