首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
NEMO (NF-kappaB essential modifier)/IKKgamma (IkappaB kinase-gamma) is required for the activation of the IkappaB kinase complex (IKK) by inflammatory stimuli such as tumor necrosis factor (TNF-alpha). Here we show that TNF-alpha stimulates the ubiquitination of NEMO in a manner that does not appear to target it for degradation and that is impaired by mutations in the NEMO zinc finger. Mutations of the zinc finger are found in patients with hypohidrotic ectodermal dysplasia with immunodeficiency (HED-ID) and lead to the impairment of TNF-alpha-stimulated IKK phosphorylation and activation. In addition, the ubiquitination of NEMO is mediated by c-IAP1, an inhibitor of apoptosis protein that is a component of the TNF receptor signaling complex. Thus, the ubiquitination of NEMO mediated by c-IAP1 likely plays an important role in the activation of IKK by TNF-alpha. Also, defective NEMO ubiquitination may be responsible for the impaired cellular NF-kappaB signaling found in patients with HED-ID.  相似文献   

2.
The human herpesvirus 8 (HHV8, also called Kaposi's sarcoma-associated herpesvirus) has been linked to Kaposi's sarcoma and primary effusion lymphoma (PEL) in immunocompromised individuals. We demonstrate that PEL cell lines have a constitutively active NF-kappaB pathway, which is associated with persistent phosphorylation of IkappaBalpha. To elucidate the mechanism of NF-kappaB activation in PEL cell lines, we have investigated the role of viral FLICE inhibitory protein (vFLIP) in this process. We report that stable expression of HHV8 vFLIP in a variety of cell lines is associated with persistent NF-kappaB activation caused by constitutive phosphorylation of IkappaBalpha. HHV8 vFLIP gets recruited to a approximately 700-kDa IkappaB kinase (IKK) complex and physically associates with IKKalpha, IKKbeta, NEMO/IKKgamma, and RIP. HHV8 vFLIP is incapable of activating NF-kappaB in cells deficient in NEMO/IKKgamma, thereby suggesting an essential role of an intact IKK complex in this process. Our results suggest that HHV8 vFLIP might contribute to the persistent NF-kappaB activation observed in PEL cells by associating with and stimulating the activity of the cellular IKK complex.  相似文献   

3.
4.
The IkappaB kinase (IKK) complex includes the catalytic components IKKalpha and IKKbeta in addition to the scaffold protein IKKgamma/NEMO. Increases in the activity of the IKK complex result in the phosphorylation and subsequent degradation of IkappaB and the activation of the NF-kappaB pathway. Recent data indicate that the constitutive activation of the NF-kappaB pathway by the human T-cell lymphotrophic virus, type I, Tax protein leads to enhanced phosphorylation of IKKgamma/NEMO by IKKbeta. To address further the significance of IKKbeta-mediated phosphorylation of IKKgamma/NEMO, we determined the sites in IKKgamma/NEMO that were phosphorylated by IKKbeta, and we assayed whether IKKgamma/NEMO phosphorylation was involved in modulating IKKbeta activity. IKKgamma/NEMO is rapidly phosphorylated following treatment of cells with stimuli such as tumor necrosis factor-alpha and interleukin-1 that activate the NF-kappaB pathway. By using both in vitro and in vivo assays, IKKbeta was found to phosphorylate IKKgamma/NEMO predominantly in its carboxyl terminus on serine residue 369 in addition to sites in the central region of this protein. Surprisingly, mutation of these carboxyl-terminal serine residues increased the ability of IKKgamma/NEMO to stimulate IKKbeta kinase activity. These results indicate that the differential phosphorylation of IKKgamma/NEMO by IKKbeta and perhaps other kinases may be important in regulating IKK activity.  相似文献   

5.
The link between the NF-kappaB signal transduction pathway and cancer is now well established. Inhibiting this pathway is therefore a promising approach in the treatment of certain cancers through a pro-apoptotic effect in malignant cells. Owing to its central role in the pathway, the IkappaB kinase (IKK) complex is a privileged target for designing inhibitors. Previously, we showed that oligomerization of NEMO is necessary for IKK activation and defined a minimal oligomerization domain (CC2-LZ) for NEMO, and we developed NEMO peptides inhibiting NF-kappaB activation at the level of the IKK complex. To improve the low-affinity inhibitors, we used ribosome display to select small and stable proteins with high affinity against the individual CC2-LZ because the entire NEMO protein is poorly soluble. Several binders with affinities in the low nanomolar range were obtained. When expressed in human cells, some of the selected molecules, despite their partial degradation, inhibited TNF-alpha-mediated NF-kappaB activation while having no effect on the basal activity. Controls with a naive library member or null plasmid had no effect. Furthermore, we could show that this NF-kappaB inhibition occurs through a specific interaction between the binders and the endogenous NEMO, resulting in decreased IKK activation. These results indicate that in vitro selections with the NEMO subdomain alone as a target may be sufficient to lead to interesting compounds that are able to inhibit NF-kappaB activation.  相似文献   

6.
IKKgamma/NEMO is an essential regulatory component of the IkappaB kinase complex that is required for NF-kappaB activation in response to various stimuli including tumor necrosis factor-alpha and interleukin-1beta. To investigate the mechanism by which IKKgamma/NEMO regulates the IKK complex, we examined the ability of IKKgamma/NEMO to recruit the IkappaB proteins into this complex. IKKgamma/NEMO binding to wild-type, but not to a kinase-deficient IKKbeta protein, facilitated the association of IkappaBalpha and IkappaBbeta with the high molecular weight IKK complex. Following tumor necrosis factor-alpha treatment of HeLa cells, the majority of the phosphorylated form of endogenous IkappaBalpha was associated with the high molecular weight IKK complex in HeLa cells and parental mouse embryo fibroblasts but not in IKKgamma/NEMO-deficient cells. Finally, we demonstrate that IKKgamma/NEMO facilitates the association of the IkappaB proteins and IKKbeta and leads to increases in IKKbeta kinase activity. These results suggest that an important function of IKKgamma/NEMO is to facilitate the association of both IKKbeta and IkappaB in the high molecular weight IKK complex to increase IkappaB phosphorylation.  相似文献   

7.
8.
The phosphorylation of IkappaB by the IKK complex targets it for degradation and releases NF-kappaB for translocation into the nucleus to initiate the inflammatory response, cell proliferation, or cell differentiation. The IKK complex is composed of the catalytic IKKalpha/beta kinases and a regulatory protein, NF-kappaB essential modulator (NEMO; IKKgamma). NEMO associates with the unphosphorylated IKK kinase C termini and activates the IKK complex's catalytic activity. However, detailed structural information about the NEMO/IKK interaction is lacking. In this study, we have identified the minimal requirements for NEMO and IKK kinase association using a variety of biophysical techniques and have solved two crystal structures of the minimal NEMO/IKK kinase associating domains. We demonstrate that the NEMO core domain is a dimer that binds two IKK fragments and identify energetic hot spots that can be exploited to inhibit IKK complex formation with a therapeutic agent.  相似文献   

9.
10.
11.
12.
13.
Latent membrane protein 1 (LMP1), an Epstein-Barr virus transforming protein, is able to activate NF-kappaB through its carboxyl-terminal activation region 1 (CTAR1) and 2 (CTAR2), but the exact role of each domain is not fully understood. Here we show that LMP1 activates NF-kappaB in different NF-kappaB essential modulator (NEMO)-defective cell lines, but not in cells lacking both IkappaB kinase 1 (IKK1) and 2 (IKK2). Mutational studies reveal that CTAR1, but not CTAR2, mediates NEMO-independent NF-kappaB activation and that this process largely depends on IKK1. Retroviral expression of LMP1 mutants in cells lacking either functional NF-kappaB inducing kinase (NIK), NEMO, IKK1, or IKK2 further illustrates distinct signals from the two activation regions of LMP1 for persistent NF-kappaB activation. One originates in CTAR2, operates through the canonical NEMO-dependent pathway, and induces NFKB2 p100 production; the second signal originates in CTAR1, utilizes NIK and IKK1, and induces the processing of p100. Our results thus help clarify how two functional domains of LMP1 persistently activate NF-kappaB through distinct signaling pathways.  相似文献   

14.
15.
Nuclear factor kappaB (NF-kappaB) plays a pivotal role in inflammation, immunity, stress responses, and protection from apoptosis. Canonical activation of NF-kappaB is dependent on the phosphorylation of the inhibitory subunit IkappaBalpha that is mediated by a multimeric, high molecular weight complex, called IkappaB kinase (IKK) complex. This is composed of two catalytic subunits, IKKalpha and IKKbeta, and a regulatory subunit, NEMO/IKKgamma. The latter protein is essential for the activation of IKKs and NF-kappaB, but its mechanism of action is not well understood. Here we identified ABIN-1 (A20 binding inhibitor of NF-kappaB) as a NEMO/IKKgamma-interacting protein. ABIN-1 has been previously identified as an A20-binding protein and it has been proposed to mediate the NF-kappaB inhibiting effects of A20. We find that both ABIN-1 and A20 inhibit NF-kappaB at the level of the IKK complex and that A20 inhibits activation of NF-kappaB by de-ubiquitination of NEMO/IKKgamma. Importantly, small interfering RNA targeting ABIN-1 abrogates A20-dependent de-ubiquitination of NEMO/IKKgamma and RNA interference of A20 impairs the ability of ABIN-1 to inhibit NF-kappaB activation. Altogether our data indicate that ABIN-1 physically links A20 to NEMO/IKKgamma and facilitates A20-mediated de-ubiquitination of NEMO/IKKgamma, thus resulting in inhibition of NF-kappaB.  相似文献   

16.
Activation of NF-kappaB by the pro-inflammatory cytokines tumor necrosis factor (TNF) and interleukin-1 (IL-1) requires the IkappaB kinase (IKK) complex, which contains two kinases named IKKalpha and IKKbeta and a critical regulatory subunit named NEMO. Although we have previously demonstrated that NEMO associates with both IKKs, genetic studies reveal that only its interaction with IKKbeta is required for TNF-induced NF-kappaB activation. To determine whether NEMO and IKKalpha can form a functional IKK complex capable of activating the classical NF-kappaB pathway in the absence of IKKbeta, we utilized a panel of mouse embryonic fibroblasts (MEFs) lacking each of the IKK complex subunits. This confirmed that TNF-induced IkappaBalpha degradation absolutely requires NEMO and IKKbeta. In contrast, we consistently observed intact IkappaBalpha degradation and NF-kappaB activation in response to IL-1 in two separate cell lines lacking IKKbeta. Furthermore, exogenously expressed, catalytically inactive IKKbeta blocked TNF- but not IL-1-induced IkappaBalpha degradation in wild-type MEFs, and reconstitution of IKKalpha/beta double knockout cells with IKKalpha rescued IL-1- but not TNF-induced NF-kappaB activation. Finally, we have shown that incubation of IKKbeta-deficient MEFs with a cell-permeable peptide that blocks the interaction of NEMO with the IKKs inhibits IL-1-induced NF-kappaB activation. Our results therefore demonstrate that NEMO and IKKalpha can form a functional IKK complex that activates the classical NF-kappaB pathway in response to IL-1 but not TNF. These findings further suggest NEMO differentially regulates the fidelity of the IKK subunits activated by distinct upstream signaling pathways.  相似文献   

17.
NF-kappaB essential modulator (NEMO) plays an essential role in the nuclear factor kappaB (NF-kappaB) pathway as a modulator of the two other subunits of the IkappaB kinase (IKK) complex, i.e. the protein kinases, IKKalpha and IKKbeta. Previous reports all envision the IKK complex to be a static entity. Using glycerol-gradient ultracentrifugation, we observed stimulus-dependent dynamic IKK complex assembly. In wild-type fibroblasts, the kinases and a portion of cellular NEMO associate in a 350-kDa high-molecular-mass complex. In response to constitutive NF-kappaB stimulation by Tax, we observed NEMO recruitment and oligomerization to a shifted high-molecular-mass complex of 440 kDa which displayed increased IKK activity. This stimulus-dependent oligomerization of NEMO was also observed using fluorescence resonance energy transfer after a transient pulse with interleukin-1beta. In addition, fully activated, dimeric kinases not bound to NEMO were detected in these Tax-activated fibroblasts. By glycerol gradient ultracentrifugation, we also showed that: (a) in fibroblasts deficient in IKKalpha and IKKbeta, NEMO predominantly exists as a monomer; (b) in NEMO-deficient fibroblasts, IKKbeta dimers are present that are less stable than IKKalpha dimers. Intriguingly, in resting Rat-1 fibroblasts, 160-kDa IKKalpha-NEMO and IKKbeta-NEMO heterocomplexes were observed as well as a significant proportion of NEMO monomer. These results suggest that most NEMO molecules do not form a tripartite IKK complex with an IKKalpha-IKKbeta heterodimer as previously reported in the literature but, instead, NEMO is able to form a complex with the monomeric forms of IKKalpha and IKKbeta.  相似文献   

18.
Tumor necrosis factor-alpha (TNF-alpha) signaling through the IkappaB kinase (IKK) complex attenuates insulin action via the phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser307. However, the precise molecular mechanism by which the IKK complex phosphorylates IRS-1 is unknown. In this study, we report nuclear factor kappaB essential modulator (NEMO)/IKK-gamma subunit accumulation in membrane ruffles followed by an interaction with IRS-1. This intracellular trafficking of NEMO requires insulin, an intact actin cytoskeletal network, and the motor protein Myo1c. Increased Myo1c expression enhanced the NEMO-IRS-1 interaction, which is essential for TNF-alpha- induced phosphorylation of Ser307-IRS-1. In contrast, dominant inhibitory Myo1c cargo domain expression diminished this interaction and inhibited IRS-1 phosphorylation. NEMO expression also enhanced TNF-alpha-induced Ser307-IRS-1 phosphorylation and inhibited glucose uptake. In contrast, a deletion mutant of NEMO lacking the IKK-beta-binding domain or silencing NEMO blocked the TNF-alpha signal. Thus, motor protein Myo1c and its receptor protein NEMO act cooperatively to form the IKK-IRS-1 complex and function in TNF-alpha-induced insulin resistance.  相似文献   

19.
20.
A critical step in the activation of NF-kappa B is the phosphorylation of I kappa Bs by the I kappa B kinase (IKK) complex. IKK alpha and IKK beta are the two catalytic subunits of the IKK complex and two additional molecules, IKK gamma/NEMO and IKAP, have been described as further integral members. We have analyzed the function of both proteins for IKK complex composition and NF-kappa B signaling. IKAP and IKK gamma belong to distinct cellular complexes. Quantitative association of IKK gamma was observed with IKK alpha and IKK beta. In contrast IKAP was complexed with several distinct polypeptides. Overexpression of either IKK gamma or IKAP blocked tumor necrosis factor alpha induction of an NF-kappa B-dependent reporter construct, but IKAP in addition affected several NF-kappa B-independent promoters. Whereas specific down-regulation of IKK gamma protein levels by antisense oligonucleotides significantly reduced cytokine-mediated activation of the IKK complex and subsequent NF-kappa B activation, a similar reduction of IKAP protein levels had no effect on NF-kappa B signaling. Using solely IKK alpha, IKK beta, and IKK gamma, we could reconstitute a complex whose apparent molecular weight is comparable to that of the endogenous IKK complex. We conclude that while IKK gamma is a stoichiometric component of the IKK complex, obligatory for NF-kappa B signaling, IKAP is not associated with IKKs and plays no specific role in cytokine-induced NF-kappa B activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号