首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD8+ T cells have been implicated as critical effector cells in protection against preerythrocytic stage malaria, including the potent protective immunity of mice and humans induced by immunization with radiation-attenuated Plasmodium spp. sporozoites. This immunity is directed against the Plasmodium spp. parasite developing within the host hepatocyte and for a number of years has been presumed to be mediated directly by CD8+ CTL or indirectly by IFN-gamma released from CD8+ T cells. In this paper, in BALB/c mice, we establish that after immunization with irradiated sporozoites or DNA vaccines parasite-specific CD8+ T cells trigger a novel mechanism of adaptive immunity that is dependent on T cell- and non-T cell-derived cytokines, in particular IFN-gamma and IL-12, and requires NK cells but not CD4+ T cells. The absolute requirement for CD8+ T cells to initiate such an effector mechanism, and the requirement for IL-12 and NK cells in such vaccine-induced protective immunity, are unique and underscore the complexity of the immune responses that protect against malaria and other intracellular pathogens.  相似文献   

2.
The complexity of protective immunity against liver-stage malaria   总被引:28,自引:0,他引:28  
Sterile protective immunity against challenge with Plasmodium spp. sporozoites can be induced in multiple model systems and humans by immunization with radiation-attenuated Plasmodium spp. sporozoites. The infected hepatocyte has been established as the primary target of this protection, but the underlying mechanisms have not been completely defined. Abs, CD8+ T cells, CD4+ T cells, cytokines (including IFN-gamma and IL-12), and NO have all been implicated as critical effectors. Here, we have investigated the mechanisms of protective immunity induced by immunization with different vaccine delivery systems (irradiated sporozoites, plasmid DNA, synthetic peptide/adjuvant, and multiple Ag peptide) in genetically distinct inbred strains, genetically modified mice, and outbred mice. We establish that there is a marked diversity of T cell-dependent immune responses that mediate sterile protective immunity against liver-stage malaria. Furthermore, we demonstrate that distinct mechanisms of protection are induced in different strains of inbred mice by a single method of immunization, and in the same strain by different methods of immunization. These data underscore the complexity of the murine host response to a parasitic infection and suggest that an outbred human population may behave similarly. Data nevertheless suggest that a pre-erythrocytic-stage vaccine should be designed to induce CD8+ T cell- and IFN-gamma-mediated immune responses and that IFN-gamma responses may represent an in vitro correlate of pre-erythrocytic-stage protective immunity.  相似文献   

3.
The potent protective immunity against malaria induced by immunization of mice and humans with radiation-attenuated Plasmodium spp. sporozoites is thought to be mediated primarily by T-cell responses directed against infected hepatocytes. This has led to considerable efforts to develop subunit vaccines that duplicate this protective immunity, but a universally effective vaccine is still not available and in vitro correlates of protective immunity have not been established. Contributing to this delay has been a lack of understanding of the mechanisms responsible for the protection. There are now data indicating that CD8+ T cells, CD4+ T cells, cytokines, and nitric oxide can all mediate the elimination of infected hepatocytes in vitro and in vivo. By dissecting the protection induced by immunization with irradiated sporozoite, DNA and synthetic peptide-adjuvant vaccines, we have demonstrated that different T-cell-dependent immune responses mediate protective immunity in the same inbred strain of mouse, depending on the method of immunization. Furthermore, the mechanism of protection induced by a single method of immunization may vary among different strains of mice. These data have important implications for the development of pre-erythrocytic-stage vaccines designed to protect a heterogeneous human population, and of assays that predict protective immunity.  相似文献   

4.
Induction of a monospecific antiviral CD8+ T cell response may pose a risk to the host due to the narrow T cell response induced. At the individual level, this may result in selection of CD8+ T cell escape variants, particularly during chronic viral infection. Second, prior immunization toward a single dominant epitope may suppress the response to other viral epitopes, and this may lead to increased susceptibility to reinfection with escape variants circulating in the host population. To address these issues, we induced a memory response consisting solely of monospecific, CD8+ T cells by use of DNA vaccines encoding immunodominant epitopes of lymphocytic choriomeningitis virus (LCMV). We analyzed the spectrum of the CD8+ T cell response and the susceptibility to infection in H-2(b) and H-2(d) mice. Priming for a monospecific, CD8+ T cell response did not render mice susceptible to viral variants. Thus, vaccinated mice were protected against chronic infection with LCMV, and no evidence indicating biologically relevant viral escape was obtained. In parallel, a broad and sustained CD8+ T cell response was generated upon infection, and in H-2(d) mice epitope spreading was observed. Even after acute LCMV infection, DNA vaccination did not significantly impair naturally induced immunity. Thus, the response to the other immunogenic epitopes was not dramatically suppressed in DNA-immunized mice undergoing normal immunizing infection, and the majority of mice were protected against rechallenge with escape variants. These findings underscore that a monospecific vaccine may induce efficient protective immunity given the right set of circumstances.  相似文献   

5.
Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected na?ve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2)?=?0.60, p<0.0001). The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.  相似文献   

6.
Weiss WR  Jiang CG 《PloS one》2012,7(2):e31247
Live attenuated malaria vaccines are more potent than the recombinant protein, bacterial or viral platform vaccines that have been tested, and an attenuated sporozoite vaccine against falciparum malaria is being developed for humans. In mice, attenuated malaria sporozoite vaccines induce CD8(+) T cells that kill parasites developing in the liver. We were curious to know if CD8(+) T cells were also important in protecting primates against malaria. We immunized 9 rhesus monkeys with radiation attenuated Plasmodium knowlesi sporozoites, and found that 5 did not develop blood stage infections after challenge with live sporozoites. We then injected 4 of these protected monkeys with cM-T807, a monoclonal antibody to the CD8 molecule which depletes T cells. The fifth monkey received equivalent doses of normal IgG. In 3 of the 4 monkeys receiving cM-T807 circulating CD8(+) T cells were profoundly depleted. When re-challenged with live sporozoites all 3 of these depleted animals developed blood stage malaria. The fourth monkey receiving cM-T807 retained many circulating CD8(+) T cells. This monkey, and the vaccinated monkey receiving normal IgG, did not develop blood stage malaria at re-challenge with live sporozoites. Animals were treated with antimalarial drugs and rested for 4 months. During this interval CD8(+) T cells re-appeared in the circulation of the depleted monkeys. When all vaccinated animals received a third challenge with live sporozoites, all 5 monkeys were once again protected and did not develop blood stage malaria infections. These data indicate that CD8(+) T cells are important effector cells protecting monkeys against malaria sporozoite infection. We believe that malaria vaccines which induce effector CD8+ T cells in humans will have the best chance of protecting against malaria.  相似文献   

7.
The malaria parasite, Plasmodium yoelii 17X, causes a self-limited, nonlethal infection characterized, in the blood stage, by preferential invasion of reticulocytes. Previous studies have suggested that immunity to the blood stage infection may be related to enhanced levels of class I MHC Ag on the parasitized reticulocyte surface and can be adoptively transferred to immunodeficient mice by immune CD8+ T cells in the absence of CD4+ T cells. To further examine the mechanisms of CD8+ T cell involvement in immunity to blood stage P. yoelii infection, we performed in vivo CD8 depletion and adoptive transfer experiments. Depletion of CD8+ T cells during primary blood stage infection in BALB/c mice did not diminish the ability of the mice to resolve their infections. Spleen cells from immune BALB/c and C57BL/10 mice were transferred to BALB/c-nu/nu and C57BL/10-nu/nu mice, respectively. The recipient mice were CD4 depleted in vivo to kill any transferred CD4+ T cells. The mice failed to control the infection. Populations of CD4-, CD8+ T cells were transferred from immune CBA/CaJ donors to in vivo CD4-depleted CBA/CaJ recipients. The mice were unable to control the infection. Although immune unfractionated spleen cells transferred rapid protection in all three mouse strains and immune CD4+ T cells transferred immunity in the two mouse strains studied, CD8+ T cells by themselves were neither protective nor did they enhance immunity.  相似文献   

8.
Trials testing the RTS,S candidate malaria vaccine and radiation-attenuated sporozoites (RAS) have shown that protective immunity against malaria can be induced and that an effective vaccine is not out of reach. However, longer-term protection and higher protection rates are required to eradicate malaria from the endemic regions. It implies that there is still a need to explore new vaccine strategies. Lentiviral vectors are very potent at inducing strong immunological memory. However their integrative status challenges their safety profile. Eliminating the integration step obviates the risk of insertional oncogenesis. Providing they confer sterile immunity, nonintegrative lentiviral vectors (NILV) hold promise as mass pediatric vaccine by meeting high safety standards. In this study, we have assessed the protective efficacy of NILV against malaria in a robust pre-clinical model. Mice were immunized with NILV encoding Plasmodium yoelii Circumsporozoite Protein (Py CSP) and challenged with sporozoites one month later. In two independent protective efficacy studies, 50% (37.5–62.5) of the animals were fully protected (p = 0.0072 and p = 0.0008 respectively when compared to naive mice). The remaining mice with detectable parasitized red blood cells exhibited a prolonged patency and reduced parasitemia. Moreover, protection was long-lasting with 42.8% sterile protection six months after the last immunization (p = 0.0042). Post-challenge CD8+ T cells to CSP, in contrast to anti-CSP antibodies, were associated with protection (r = −0.6615 and p = 0.0004 between the frequency of IFN-g secreting specific T cells in spleen and parasitemia). However, while NILV and RAS immunizations elicited comparable immunity to CSP, only RAS conferred 100% of sterile protection. Given that a better protection can be anticipated from a multi-antigen vaccine and an optimized vector design, NILV appear as a promising malaria vaccine.  相似文献   

9.
T cells from different subsets play a major role in protective immunity against pre-erythrocytic stages of malaria parasites. Exposure of humans and animals to malaria sporozoites induces (alphabeta CD8(+) and CD4(+) T cells specific for antigens expressed in pre-erythrocytic stages of Plasmodium. These T cells inhibit parasite development in the liver, and immunization with subunit vaccines expressing the respective antigenic moieties confers protection against sporozoite challenge. gammadelta and natural killer T cells can also play a role in protective immunity. Recent studies with mice transgenic for the alphabeta T-cell receptor have revealed the existence of complex mechanisms regulating the induction and development of these responses.  相似文献   

10.
Radiation-attenuated Plasmodium sporozoites (RAS) are the only vaccine shown to induce sterilizing protection against malaria in both humans and rodents. Importantly, these “whole-parasite” vaccines are currently under evaluation in human clinical trials. Studies with inbred mice reveal that RAS-induced CD8 T cells targeting liver-stage parasites are critical for protection. However, the paucity of defined T cell epitopes for these parasites has precluded precise understanding of the specific characteristics of RAS-induced protective CD8 T cell responses. Thus, it is not known whether quantitative or qualitative differences in RAS-induced CD8 T cell responses underlie the relative resistance or susceptibility of immune inbred mice to sporozoite challenge. Moreover, whether extraordinarily large CD8 T cell responses are generated and required for protection following RAS immunization, as has been described for CD8 T cell responses following single-antigen subunit vaccination, remains unknown. Here, we used surrogate T cell activation markers to identify and track whole-parasite, RAS-vaccine-induced effector and memory CD8 T cell responses. Our data show that the differential susceptibility of RAS-immune inbred mouse strains to Plasmodium berghei or P. yoelii sporozoite challenge does not result from host- or parasite-specific decreases in the CD8 T cell response. Moreover, the surrogate activation marker approach allowed us for the first time to evaluate CD8 T cell responses and protective immunity following RAS-immunization in outbred hosts. Importantly, we show that compared to a protective subunit vaccine that elicits a CD8 T cell response to a single epitope, diversifying the targeted antigens through whole-parasite RAS immunization only minimally, if at all, reduced the numerical requirements for memory CD8 T cell-mediated protection. Thus, our studies reveal that extremely high frequencies of RAS-induced memory CD8 T cells are required, but may not suffice, for sterilizing anti-Plasmodial immunity. These data provide new insights into protective CD8 T cell responses elicited by RAS-immunization in genetically diverse hosts, information with relevance to developing attenuated whole-parasite vaccines.  相似文献   

11.
Protective immunity in paracoccidioidomycosis (PCM) is believed to be mediated by cellular immunity, but the role of T cell subsets has never been investigated. The aim of this study was to characterize the function of CD4+ and CD8+ T cells in the immunity developed by susceptible, intermediate and resistant mice after P. brasiliensis infection. In susceptible mice, depletion of CD4+ T cells did not alter disease severity and anergy of cellular immunity but diminished antibody production. Anti-CD8 treatment led to increased fungal loads, but restored DTH reactivity. In resistant mice, both CD4+ and CD8+ T cells control fungal burdens and cytokines although only the former regulate DTH reactions and antibody production. In the intermediate strain, deficiency of whole T and CD8+ T cells but not of CD4+ T or B cells led to increased mortality rates. Thus, in pulmonary PCM: (a) irrespective of the host susceptibility pattern, fungal loads are mainly controlled by CD8+ T cells, whereas antibody production and DTH reactions are regulated by CD4+ T cells; (c) CD4+ T cells play a protective role in the resistant and intermediate mouse strains, whereas in susceptible mice they are deleted or anergic; (d) genetic resistance to PCM is associated with concomitant CD4+ and CD8+ T cell immunity secreting type 1 and type 2 cytokines.  相似文献   

12.
Irradiated malaria sporozoites induce better protection than viable untreated sporozoites. We observed early differences between irradiated and viable untreated sporozoites in priming responses in vivo to a protective CD8 T-cell epitope, pb9, of the circumsporozoite protein of Plasmodium berghei. Sporozoites were processed for MHC class I presentation by dendritic cells (DC) to prime pb9-specific IFN-gamma-producing CD8 T cells. DC pulsed with untreated and irradiated sporozoites were similarly capable of priming central memory T-cell responses, detectable by the IFN-gamma cultured ELISPOT assay. However, irradiation significantly enhanced sporozoites' ability to prime effector T-cell responses detectable by the IFN-gammaex vivo ELISPOT assay. Irradiation also enhanced the ability of splenic APC to process and present sporozoites in order to re-stimulate pb9-specific polyclonal and clonal T-cell responses. Sporozoites did not stimulate T cells in the absence of APC. Over-irradiation decreased the sporozoites' T-cell stimulating capacity in vitro at high parasite doses, which may indicate that an optimal irradiation dose is necessary to induce protective immunity by sporozoite inoculation. The induction of sporozoite-specific CD8 T-cell responses without the need for liver stage infection identifies a potentially important mechanism in the development of pre-erythrocytic immunity.  相似文献   

13.
Induction of nonspecific resistance to Schistosoma mansoni infection after the i.v. injection of viable BCG was investigated in outbred mice and a panel of inbred and H-2 congenic strains. Significant protection was induced in CF1, A/J, C57BL/6, C57BL/10, DBA/2, C57BR, and SJL mice. BALB/c mice were not protected whereas CBA and C3H mice expressed intermediate degrees of protection. Expression of the protective phenomenon is not controlled by genes within the MHC as shown by the marked differences in response between BALB/c and DBA/2 (H-2d) as well as between C57BR and C3H (H-2k) mice. H-2 congenic strains with C57BL/10 background (B10.A and B10.D2) were high responders. BALB.B10 mice carrying the high responder (B10) MHC on the nonresponder (BALB/c) background were not protected. The degree of splenic hypertrophy did not correlate with the expression of nonspecific resistance. These results demonstrate that, in addition to controlling specific immune responses, genetic differences influence the nonspecific protective phenomena related to BCG administration as well.  相似文献   

14.
T cell-mediated protection against a recombinant vaccinia virus was evaluated in mice with respect to the relative contributions of CTL vs that of T cell-dependent IL and of CD4+ cells. H-2b mice primed with the wildtype of vesicular stomatitis virus serotype Indiana (VSV-IND wt) mount an in vitro measurable cytotoxic response against the nucleoprotein (NP) of VSV-IND and are protected against a challenge infection with a vaccinia-VSV recombinant virus expressing the NP of VSV-IND (vacc-IND-NP). Their protective mechanism was highly susceptible to in vivo depletion of CD8+ T cells, but resistant to CD4+ depletion or treatment with anti-IFN-gamma and anti-TNF-alpha. Surprisingly, also VSV-CTL nonresponder H-2k mice were protected against a challenging infection with vacc-IND-NP when primed with VSV-IND wt. In contrast to the CTL responder H-2b mice, this protection was highly susceptible to CD4+ T cell depletion and to anti-IFN-gamma or anti-TNF-alpha treatment, but resistant to CD8+ T cell depletion. Antibodies were not responsible because they failed to transfer protection; in contrast CD4+ T cells conferred significant protection. VSV-CTL responder H-2b and nonresponder H-2k mice were protected almost equally well against a challenge dose of 10(3) pfu vacc-IND-NP inoculated intracerebrally. However, after intracerebral challenge with 5 x 10(6) pfu vacc-IND-NP, the CTL nonresponder mice died, whereas the CTL responder mice eliminated the virus by day 5. These results collectively show that CD4+ T cell-dependent IL may mediate antiviral protection, but their efficiency is relatively weak compared with CD8-mediated protection correlating with cytotoxic activity in vitro.  相似文献   

15.
In order to provide a rational basis for the development of a pre-erythrocytic malaria vaccine we have aimed at: (a) elucidating the mechanisms of protection, and (b) identifying vaccine formulations that best elicit protection in experimental animals and humans. Based on earlier successful immunization of experimental animals with irradiated sporozoites, human volunteers were exposed to the bites of large numbers of Plasmodium falciparum or P. vivax infected irradiated mosquitoes. The result of this vaccine trial demonstrated for the first time that a pre-erythrocytic vaccine, administered to humans, can result in their complete resistance to malaria infection. However, since infected irradiated mosquitoes are unavailable for large scale vaccination, the alternative is to develop subunit vaccines. The human trials using irradiated sporozoites provided valuable information on the human immune responses to pre-erythrocytic stages and studies on mice an excellent experimental model to characterize protective immune mechanisms. The circumsporozoite protein, the first pre-erythrocytic antigen identified, is present in all malaria species, displaying a similar structure, with a central region of repeats, and two conserved regions, essential for parasite development. Most pre-erythrocytic vaccine candidates are based on the CS protein, expressed in various cell lines, microorganisms, and recently the corresponding DNA. We and others have identified CS-specific B and T cell epitopes, recognized by the rodent and human immune systems, and used them for the development of synthetic vaccines. We used synthetic peptide vaccines, multiple antigen peptides and polyoximes, for immunization, first in experimental animals, and recently in two human safety and immunogenicity trials. We also report here on our work on T cell mediated immunity, particularly the protection of mice immunized with viral vectors expressing CS-specific cytotoxic CD8+ T cell epitopes, and the striking booster effect of recombinant vaccinia virus. To what degree CD8+ T cells, and/or other T cells specific for sporozoites and/or liver stage epitopes, contribute to pre-erythrocytic protective immunity in humans, remains to be determined.  相似文献   

16.
Induction of efficient adaptive T cell-mediated immunity against the intracellular bacterium Listeria monocytogenes requires its successful invasion of host cell cytosol. However, it is not clear whether its cytosolic escape and growth are sufficient to induce T cell-mediated clearance and protection upon secondary infection. To investigate this issue, we have searched for mutants that do not induce long-term protective immunity yet invade the cytosol of infected cells. We found that mice immunized with L. monocytogenes lacking the SecA2 ATPase, an auxiliary protein secretion system present in several Gram-positive pathogenic bacteria, mounted a robust cytolytic IFN-gamma-secreting CD8+ T cell response but were not protected against a secondary challenge with wild-type (wt) bacteria. Furthermore, CD8+ T cells from mice immunized with secA2- bacteria failed to transfer protection when injected into recipient mice demonstrating that they were unable to confer protection. Also, secA2- and wt L. monocytogenes spread to the same myeloid-derived cell types in vivo and SecA2 deficiency does not interfere with intracytosolic bacteria multiplication. Therefore, cytosol invasion is not sufficient for inducing secondary protective responses and induction of memory CD8+ T cells mediating long-term antibacterial protective immunity is dependent upon SecA2 expression inside the cytosol of host cells in vivo.  相似文献   

17.
Inbred strains of mice were immunized with p190-3, a 38-kDa recombinant protein derived from p190, a major merozoite surface Ag of the malaria parasite Plasmodium falciparum. Ag-specific proliferative T cell responses were obtained in H-2b, H-2d, and H-2k mouse strains. Surprisingly, mice of the H-2b haplotype (e.g., C57BL/6) did not give a measurable antibody response to the recombinant protein administered in Freund's adjuvant, but CD8+/CD4- as well as CD4+/CD8- T cells specific for p190-3 could be obtained after in vivo priming and in vitro selection with Ag. Distinct epitopes of p190-3 recognized by the CD8+ and CD4+ T cells from C57BL/6 mice were identified. The CD8+ T cells could kill H-2b APC in the presence of the appropriate epitope-containing peptide. The p190-3-specific CD4+ cells isolated from C57BL/6 mice were of the Th1 type. In contrast, Th2 cells, but no CD8+ T cells were present in a p190-3-specific line from BALB/c mice, which give good antibody responses to p190-3.  相似文献   

18.
We studied immunity to the blood stage of the rodent malaria, Plasmodium vinckei vinckei, which is uniformly lethal to mice. BALB/c mice develop solid immunity after two infections and drug cure. The following experiments define the basis of this immunity. Transfer of pooled serum from such immune mice renders very limited protection to BALB/c mice and no protection to athymic nu/nu mice. Moreover, B cell-deficient C3H/HeN mice develop immunity to P. vinckei reinfection in the same manner as immunologically intact mice, an observation made earlier. In vivo depletion of CD4+ T cells in immune mice abrogates their immunity. This loss of immunity could be reversed through reconstitution of in vivo CD4-depleted mice with fractionated B-, CD8-, CD4+ immune spleen cells; however, adoptive transfer of fractionated CD4+ T cells from immune spleen into naive BALB/c or histocompatible BALB/c nude mice does not render recipients immune. In vivo depletion of CD8+ T cells did not influence the parasitemia in nonimmune or immune mice. Splenectomy of immune mice completely reverses their immunity. Repletion of splenectomized mice with their own spleen cells does not reconstitute their immunity. We conclude that some feature of the malaria-modified spleen acts in concert with the effector/inducer function of CD4+ T cells to provide protection from P. vinckei. To be consistent with this finding, a malaria vaccine may require a combination of malaria Ag to induce immune CD4+ T cells and an adjuvant or other vaccine vehicle to alter the spleen.  相似文献   

19.
The nonstructural immediate-early protein pp89 of murine cytomegalovirus (MCMV) is the first viral protein synthesized after infection and has a regulatory function in viral gene expression. Despite its localization in the nucleus of infected cells, pp89 is also the dominant antigen recognized by MCMV-specific cytolytic T lymphocytes. The recombinant vaccinia virus MCMV-ieI-VAC, which expresses pp89, was used to study the capacity of this protein to induce protective immunity in BALB/c mice. Vaccination with MCMV-ieI-VAC induced a long-lasting immunity that protected mice against challenge with a lethal dose of MCMV but did not prevent infection and morbidity. In vivo depletion of CD8+ T lymphocytes before challenge completely abrogated the protective immunity. CD8+ T lymphocytes derived from MCMV-ieI-VAC-primed donors and adoptively transferred into sublethally irradiated and MCMV-infected recipients were found to limit viral replication in host tissues, whereas CD4+ T lymphocytes and pp89-specific antiserum had no protective effect. The data demonstrate for the first time that a single nonstructural viral protein can confer protection against a lethal cytolytic infection and that this immunity is entirely mediated by the CD8+ subpopulation of T lymphocytes.  相似文献   

20.
This study was designed to evaluate the efficacy and mechanisms of protection mediated by recombinant vaccinia viruses encoding immediate-early (IE) proteins of herpes simplex virus type 2 (HSV-2). Three mouse strains were immunized against the IE proteins ICP27, ICP0, and ICP4, and mice were challenged intracutaneously in the zosteriform model with HSV-2 strain MS. Protection was observed only following immunization with the ICP27 construct and then only in the BALB/c mouse strain. Protection in BALB/c mice was ablated by CD4+ T-cell suppression but remained intact in animals depleted of CD8+ T cells. Moreover, protection could be afforded to SCID nude recipients with CD4+ but not CD8+ T cells from ICP27-immunized mice. Only BALB/c mice developed a delayed-type hypersensitivity reaction to HSV-2, and in vitro measurements of humoral and cell-mediated immunity revealed response patterns to ICP27 and HSV that differed between protected BALB/c and unprotected mouse strains. Accordingly, BALB/c responses showed antigen-induced cytokine profiles dominated by type 1 cytokines, whereas C57BL/6 and C3H/HeN mice generated cytokine responses mainly of the type 2 variety. Our results may indicate that protection against zosterification is mainly mediated by CD4+ T cells that express a type 1 cytokine profile and that protective vaccines against HSV which effectively induce such T-cell responses should be chosen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号