首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 7.8 kb plasmid (pQM17) encoding mercury resistance was isolated from two epilithic strains of Acinetobacter calcoaceticus. The plasmid had a broad host range when mobilized by RP1, transferring into Pseudomonas aeruginosa, P. putida, P. fluorescens, Escherichia coli, Proteus vulgaris and Chromobacterium sp. with frequencies ranging from 5.3 x 10(-9) to 4.6 x 10(-4) per recipient. The plasmid could be transferred into A. calcoaceticus BD413 using intact cells of donor and recipient bacteria (i.e. natural transformation) and there was a broad temperature optimum (14-37 degrees C) for transformation. Transformation was as efficient in liquid matings as on plates but there was no effect of pH in the range 5.6-7.9. Maximum transformation frequencies were obtained after 24 h on agar plates containing 3.5-10 g C 1-1 with donor to recipient ratios ranging from 6 to 415.  相似文献   

2.
An R' plasmid, R'PA1, carrying a 3- to 4-min segment of the Pseudomonas aeruginosa chromosome has been derived from the incP-1 plasmid R68.45. The chromosomal segment includes the markers argA, argB, argH, and lys-12. The plasmid retains all the properties of R68.45, including chromosome mobilization ability and wide bacterial host range. R'PA1 reverts to R68.45 in rec+ strains of P. aeruginosa, but it can be maintained in a recA strain.  相似文献   

3.
The transposon Tn1 has been translocated to the chromosome of Pseudomonas aeruginosa from plasmid R18, following hydroxylamine mutagenesis of the plasmid. Twelve insertions were mapped to six distinct sites distal to 55 min of the origin of chromosome transfer by the plasmid FP2. These map locations were confirmed by host chromosome mobilization tests mediated by plasmids R18 or R91-5, due to Tn1 homology between plasmid and host chromosome. All the Tn1 chromosomal inserts were retransposable to other plasmids (Sa, R931 and R38). The behavior of Tn1 in P. aeruginosa was very similar to its behavior in Escherichia coli with respect to regional specificity, orientation of insertion and in serving as regions of homology for host chromosome mobilization by plasmids. This last property has permitted the demonstration that Tn1 on R18 and R91-5 is in opposite orientation with respect to the origin of transfer (oriT) of the two plasmids.  相似文献   

4.
S Guss  S Palchaudhuri 《Gene》1983,25(1):151-154
We have isolated a derivative of RP1, a broad-host-range plasmid, in whose presence the ilvB112 mutation of Pseudomonas aeruginosa strain PU21 reverts at a high frequency. This derivative of RP1 (RP1-ilvB+ complex) may have arisen by a fusion of the P. aeruginosa ilvB gene with RP1 during their co-transfer into strain PU21. The RP1 derivative is not very stable in the PU21 background but it can apparently be stabilized by its integration into the host chromosome, resulting in an Hfr-type donor strain, SP500.  相似文献   

5.
The TOL plasmid originally isolated in Pseudomonas putida (arvilla) mt-2 was transmissible to strains of the fluorescens group of Pseudomonas, i.e., P. putida, P. fluorescens, and P. aeruginosa, except for a strain of P. aeruginosa, strain PAO. The same strain, however, could accept the plasmid when its restriction and modification abilities were lost by mutations or by growing at high temperature. In addition, the transmissibility of the TOL plasmid from strain PAO to P. putida was low when the plasmid was modified by the donor. By using P. aeruginosa PAO carrying the TOL plasmid, the stability and genetic expression of the plasmid as well as its effect on the host cell growth were examined. Thus the self-maintenance of the plasmid was found to be thermosensitive. Furthermore, the TOL plasmid inhibited the growth of strain PAO at high temperature, accompanied by the formation of some filamentous cells. These thermosensitive properties of the TOL plasmid were host dependent and not exhibited in another strain of P. aeruginosa.  相似文献   

6.
RSF1010 plasmid DNA was introduced into Pseudomonas putida and P. aeruginosa cells and maintained stably, suggesting the potential usefulness of this plasmid as a vector in Pseudomonas species. The number of copies of RSF1010 was 43 per chromosome equivalent in P. putida cells.  相似文献   

7.
An improved method for allele replacement in Pseudomonas aeruginosa was developed. The two main ingredients of the method are: (i) novel ColE1-type cloning vectors derived from pBR322 and pUC19; and (ii) a family of cassettes containing a portable oriT, the sacB gene from Bacillus subtilis as a counter-selectable marker, and a chloramphenicol-resistance gene allowing positive selection of both oriT and sacB. Introduction of plasmid-borne DNA into the chromosome was achieved in several steps. The DNA to be exchanged was first cloned into the new ColE1-type vectors. After insertion of the oriT and sacB sequences, these plasmid were conjugally transferred into P. aeruginosa and plasmid integrants were selected. Plating on sucrose-containing medium allowed positive selection for both plasmid excision and curing since Pseudomonas aeruginosa strains containing the sacB gene in single- or multiple copy were highly sensitive to 5% sucrose in rich medium. This procedure was successfully used to introduce an agmR mutation into P. aeruginosa wild-type strain PAO1 and should allow the exchange of any DNA segment into any non-essential regions of the P. aeruginosa chromosome.  相似文献   

8.
The Pseudomonas aeruginosa plasmid pKLC102 coexists as a plasmid and a genome island in clone C strains. Whereas the related plasmid pKLK106 reversibly recombines with P. aeruginosa clone K chromosomes at one of the two tRNA(Lys) genes, pKLC102 is incorporated into the tRNA(Lys) gene only close to the pilA locus. Targeting of the other tRNA(Lys) copy in the chromosome is blocked by a 23,395-bp mosaic of truncated PAO open reading frames, transposons, and pKLC102 homologs. Annotation and phylogenetic analysis of the large 103,532-bp pKLC102 sequence revealed that pKLC102 is a hybrid of plasmid and phage origin. The plasmid lineage conferred oriV and genes for replication, partitioning, and conjugation, including a pil cluster encoding type IV thin sex pili and an 8,524-bp chvB glucan synthetase gene that is known to be a major determinant for host tropism and virulence. The phage lineage conferred integrase, att, and a syntenic set of conserved hypothetical genes also observed in the tRNA(Gly)-associated genome islands of P. aeruginosa clone C chromosomes. In subgroup C isolates from patients with cystic fibrosis, pKLC102 was irreversibly fixed into the chromosome by the insertion of the large 23,061-bp class I transposon TNCP23, which is a composite of plasmid, integron, and IS6100 elements. Intramolecular transposition of a copy of IS6100 led to chromosomal inversions and disruption of plasmid synteny. The case of pKLC102 in P. aeruginosa clone C documents the intraclonal evolution of a genome island from a mobile ancestor via a reversibly integrated state to irreversible incorporation and dissipation in the chromosome.  相似文献   

9.
As a result of the production of two dehalogenases (DehI and DehII), Pseudomonas putida PP3 utilized halogenated alkanoic acids, such as 2-monochloropropionic acid (2MCPA), as sole sources of carbon and energy. The DehI gene (dehI) was carried on a mobile genetic element (DEH) located on the chromosome of strain PP3. DEH recombined with target plasmid DNAs at high frequencies (e.g. 3.8 x 10(-4) per RP4.5 plasmid transferred). The regulated expression of dehI was detected in P. putida, Pseudomonas aeruginosa, and Escherichia coli strains containing derivative plasmids of RP4.5 and pWW0 recombined with DEH. Movement of DEH from the unstable RP4 derivatives pNJ5000 and pMR5 resulted in the insertion of DEH into the chromosome of RecA+ strains of P. putida but not in RecA+ nor RecA- strains of E. coli. Rescue of DEH from the chromosome of P. putida KT2441 onto plasmid RP4 involved recombination at a frequency (2.7 x 10(-4) per RP4 plasmid transferred) comparable to that observed in strain PP3. The DEH element was not classified as a conventional transposon because it did not move as a discrete DNA fragment: dehI-containing inserts in plasmid DNA targets varied in size between 6 and 13 kb. In addition, DEH exhibited a marked preference for insertion into a specific site on the plasmid pWW0, but its transposition, independent of host recombinational systems, remains to be demonstrated. However, the transposonlike characteristics of DEH included the conservation of restriction endonuclease sites, high-frequency recombination with different target replicons (plasmid and chromosomal DNA), and promiscuous insertion into plasmid RP4-based replicons. Therefore, it is proposed that DEH is an unusual mobile genetic element.  相似文献   

10.
Abstract Plasmid primes carrying various fragments of Pseudomonas putida chromosome have been derived from pMO22, a derivative of R91-5 loaded with Tn 501 . These prime plasmids transfer efficiently to P. aeruginosa where they effectively complement various auxotrophic markers. Proof of prime plasmid formation has been provided by the high-frequency transfer of plasmid and chromosomal markers, the unselected cotransfer of either plasmid or chromosomal markers into P. aeruginosa and by transformation of both plasmid and chromosomal markers using prime plasmid DNA. Such prime plasmids have been used to map the location of new markers on the P. putida chromosome.  相似文献   

11.
A 10-kilobase DNA fragment previously shown to contain the phosphomannose isomerase gene (pmi) of Pseudomonas aeruginosa was used to construct a pBR325-based hybrid that can be propagated in P. aeruginosa only by the formation of a chromosomal-plasmid cointegrate. This plasmid, designated pAD4008, was inserted into the P. aeruginosa chromosome by recombination at a site of homology between the cloned P. aeruginosa DNA and the chromosome. Mobilization of pAD4008 into P. aeruginosa PAO and 8830 and selection for the stable acquisition of tetracycline resistance resulted in specific and predictable changes in the pattern of endonuclease restriction sites in the phosphomannose isomerase gene region of the chromosomes. Chromosomal DNA from the tetracycline-resistant transformants was used to clone the drug resistance determinant with Bg/II or XbaI, thereby allowing the "walking" of the P. aeruginosa chromosome in the vicinity of the pmi gene. Analysis of overlapping tetracycline-resistant clones indicated the presence of sequences homologous to the DNA insert of plasmid pAD2, a recombinant clone of P. aeruginosa origin previously shown to complement several alginate-negative mutants. Restriction mapping, subcloning, and complementation analysis of a 30-kilobase DNA region demonstrated the tight clustering of several genetic loci involved in alginate biosynthesis. Furthermore, the tetracycline resistance determinant in PAO strain transformed by pAD4008 was mapped on the chromosome by plasmid FP2-mediated conjugation and was found to be located near 45 min.  相似文献   

12.
A mobilizable plasmid which carries the promoter for the exotoxin A (ETA) structural gene fused to lacZ was integrated into the chromosome of wild-type and mutant strains of Pseudomonas aeruginosa at the toxA locus by homologous recombination. beta-galactosidase synthesis in the strains (cointegrates) carrying the toxA-lacZ fusions was regulated like ETA synthesis is in P. aeruginosa. Two multicopy plasmids carrying a positive regulatory gene designated toxR were constructed which are identical except with respect to the orientation of toxR to the lacZ promoter on the plasmid. These plasmids were then introduced into P. aeruginosa cointegrate strains. When toxR was using its own promoter, synthesis of beta-galactosidase in the cointegrate strains was increased but the pattern of iron regulation was not altered. In contrast, when the lacZ promoter was directing synthesis of the toxR product in the cointegrate strains, iron regulation of beta-galactosidase and ETA synthesis were abolished.  相似文献   

13.
Isolation and characterization of Pseudomonas putida R-prime plasmids   总被引:1,自引:0,他引:1  
A number of enhanced chromosome mobilizing (ECM) plasmids derived from the wide host range plasmid R68 have been used to construct R-prime plasmids carrying a maximum of two map minutes of the Pseudomonas putida PPN chromosome, using Pseudomonas aeruginosa PAO as the recipient. For one ECM plasmid, pMO61, the ability to form R-primes did not correlate with the ability to mobilize chromosomes in intrastrain crosses, suggesting that different mechanisms are involved. Physical analysis of one R-prime showed that 3.5 kb of chromosomal DNA had been inserted between the tandem IS21 sequences carried by the parent ECM plasmid.  相似文献   

14.
ExoU is a potent Pseudomonas aeruginosa cytotoxin translocated into host cells by the type III secretion system. A comparison of genomes of various P. aeruginosa strains showed that that the ExoU determinant is found in the same polymorphic region of the chromosome near a tRNA(Lys) gene, suggesting that exoU is a horizontally acquired virulence determinant. We used yeast recombinational cloning to characterize four distinct ExoU-encoding DNA segments. We then sequenced and annotated three of these four genomic regions. The sequence of the largest DNA segment, named ExoU island A, revealed many plasmid- and genomic island-associated genes, most of which have been conserved across a broad set of beta- and gamma-Proteobacteria. Comparison of the sequenced ExoU-encoding genomic islands to the corresponding PAO1 tRNA(Lys)-linked genomic island, the pathogenicity islands of strain PA14, and pKLC102 of clone C strains allowed us to propose a mechanism for the origin and transmission of the ExoU determinant. The evolutionary history very likely involved transposition of the ExoU determinant onto a transmissible plasmid, followed by transfer of the plasmid into different P. aeruginosa strains. The plasmid subsequently integrated into a tRNA(Lys) gene in the chromosome of each recipient, where it acquired insertion sequences and underwent deletions and rearrangements. We have also applied yeast recombinational cloning to facilitate a targeted mutagenesis of ExoU island A, further demonstrating the utility of the specific features of the yeast capture vector for functional analyses of genes on large horizontally acquired genetic elements.  相似文献   

15.
The DNA primase gene of the promiscuous IncP-1 conjugative plasmid RP1, encoding two polypeptides of 118 and 80 kDa, was inserted into the transposon Tn5 in Escherichia coli. The derivative transposon, Tn2523, was then transposed to a temperature-sensitive replication mutant of the promiscuous IncP-1 conjugative plasmid R68 at permissive temperature and the plasmid transferred to Pseudomonas aeruginosa strain PAO. The latter strain was then grown at non-permissive temperature to identify transposition of Tn2523 into the P. aeruginosa chromosome. Immunological and enzymic analysis showed the expression of functional primase polypeptides in the constructed P. aeruginosa strain. This strain also restored wild-type conjugational transfer proficiency, by complementation, to mutants of the IncP-1 plasmid R18 affected in transfer from P. aeruginosa to P. stutzeri or to Acinetobacter calcoaceticus due to transposon Tn7 insertion mutations in the primase gene. This strategy of cloning into a transposon and integration into the bacterial chromosome should facilitate genetic manipulation and studies of gene expression in a range of Gram-negative bacteria.  相似文献   

16.
Versatile cloning vector for Pseudomonas aeruginosa.   总被引:6,自引:5,他引:1       下载免费PDF全文
A pBR322:RSF1010 composite plasmid, constructed in vitro, was used as a cloning vector in Pseudomonas aeruginosa. This nonamplifiable plasmid, pMW79, has a molecular weight of 8.4 X 10(6) and exists as a multicopy plasmid in both P. aeruginosa and Escherichia coli. In P. aeruginosa strain PAO2003, pMW79 conferred resistance to carbenicillin and tetracycline. Characterization of pMW79 with restriction enzymes revealed that four enzymes (BamHI, SalI, HindIII, and HpaI) cleaved the plasmid at unique restriction sites. Cloning P. aeruginosa chromosomal deoxyribonucleic acid fragments into the BamHI or SalI site of pMW79 inactivated the tetracycline resistance gene. Thus, cells carrying recombinant plasmids could be identified by their carbenicillin resistance, tetracycline sensitivity phenotype. Deoxyribonucleic acid fragments of approximately 0.5 to 7.0 megadaltons were inserted into pMW79, and the recombinant plasmids were stably maintained in a recombination-deficient (recA) P. aeruginosa host.  相似文献   

17.
The sal gene encoding Pseudomonas cepacia salicylate hydroxylase was cloned and the sal encoding Pseudomonas putida salicylate hydroxylase was subcloned into plasmid vector pRO2317 to generate recombinant plasmids pTK3 and pTK1, respectively. Both cloned genes were expressed in the host Pseudomonas aeruginosa PAO1. The parental strain can utilize catechol, a product of the salicylate hydroxylase-catalyzed reaction, but not salicylate as the sole carbon source for growth due to a natural deficiency of salicylate hydroxylase. The pTK1- or pTK3-transformed P. aeruginosa PAO1, however, can be grown on salicylate as the sole carbon source and exhibited activities for the cloned salicylate hydroxylase in crude cell lysates. In wild-type P. cepacia as well as in pTK1- or pTK3-transformed P. aeruginosa PAO1, the presence of glucose in addition to salicylate in media resulted in lower efficiencies of sal expression P. cepacia apparently can degrade salicylate via the meta cleavage pathway which, unlike the plasmid-encoded pathway in P. putida, appears to be encoded on chromosome. As revealed by DNA cross hybridizations, the P. cepacia hsd and ht genes showed significant homology with the corresponding plasmid-borne genes of P. putida but the P. cepacia sal was not homologous to the P. putida sal. Furthermore, polyclonal antibodies developed against purified P. cepacia salicylate hydroxylase inactivated the cloned P. cepacia salicylate hydroxylase but not the cloned P. putida salicylate hydroxylase in P. aeruginosa PAO1. It appears that P. cepacia and P. putida salicylate hydroxylases, being structurally distinct, were probably derived through convergent evolution.  相似文献   

18.
The plasmid pSCR1 containing the gene for mandelate racemase (EC 5.1.2.2) from Pseudomonas putida (ATCC 12633) allows Pseudomonas aeruginosa (ATCC 15692) to grow on (R)-mandelate as its sole carbon source [Ransom, S. C., Gerlt, J. A., Powers, V. M., & Kenyon, G. L. (1988) Biochemistry 27, 540]; the chromosome of the P. aeruginosa host apparently does not contain the gene for mandelate racemase but does contain genes for the remaining enzymes in the mandelate pathway and enables growth on (S)-mandelate as carbon source. However, in the presence of alpha-phenylglycidate, an active-site-directed irreversible inhibitor (affinity label) of mandelate racemase, P. aeruginosa transformed with pSCR1 can utilize (S)-mandelate but not (R)-mandelate as carbon source. This inhibition of growth on (R)-mandelate provides a metabolic selection for mutants that are resistant to alpha-phenylglycidate. When (R)-mandelate is used as carbon source and alpha-phenylglycidate is present, a few colonies of P. aeruginosa transformed with pSCR1 grow slowly and appear on plates after several days. The plasmid isolated from these cells confers resistance to alpha-phenylglycidate on newly transformed cells of P. aeruginosa. This resistance to the affinity label is not due to a mutation within the primary structure of the enzyme. A single base change (C----A) located 87 bp upstream of the initiation codon for the gene for mandelate racemase was detected in three independent isolates of alpha-phenylglycidate-resistant colonies and appears responsible for a 30-fold increase in the amount of mandelate racemase encoded by the gene contained in the plasmid.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
Fifty-one host range mutants of the promiscuous plasmid R18 were isolated by Tn7 insertion mutagenesis by using Pseudomonas aeruginosa as the permissive, and P. stutzeri as the nonpermissive, host. Endonuclease cleavage mapping of 40/51 mutants showed that 37 mutations mapped to kilobase coordinates 40.3-43.8 in the two overlapping genes encoding plasmid DNA primase. Thus by this procedure it has been possible readily to isolate a large number of primase mutants. The majority of these mutations mapped to the overlapping DNA whereas a few also mapped to the nonoverlap region encoding the larger 118-kDa polypeptide. Among these mutants were four which had long deletions within the overlapping segment and extending to varying lengths anticlockwise of it. The genetic defect in these mutants has been correlated with greatly reduced in vitro primase enzyme activity. The primase mutations drastically affected the mutant's ability to mobilize a nonconjugative, wide-host-range IncP-4(Q) plasmid from P. aeruginosa to P. stutzeri although mobilization within P. aeruginosa was affected to a lesser degree. Other insertion mutations were mapped to the regions of plasmid origin of transfer (oriT) and origin of replication (oriV), but their physical location was different to previously identified similar mutations obtained using Escherichia coli as the nonpermissive host. Their physically distinct locations were correlated with differences in their transmissibility from P. aeruginosa into enteric bacterial species and into other Pseudomonas species.  相似文献   

20.
When Pseudomonas aeruginosa PAO1c or P. putida PPO200 or PPO300 carry plasmid pJP4, which encodes enzymes for the degradation of 2,4-dichlorophenoxyacetic acid (TFD) to 2-chloromaleylacetate, cells do not grow on TFD and UV-absorbing material with spectral characteristics of chloromaleylacetate accumulates in the culture medium. Using plasmid pRO1727, we cloned from the chromosome of a nonfluorescent pseudomonad, Pseudomonas sp. strain PKO1, 6- and 0.5-kilobase BamHI DNA fragments which contain the gene for maleylacetate reductase. When carrying either of the recombinant plasmids, pRO1944 or pRO1945, together with pJP4, cells of P. aeruginosa or P. putida were able to utilize TFD as a sole carbon source for growth. A novel polypeptide with an estimated molecular weight of 18,000 was detected in cell extracts of P. aeruginosa carrying either plasmid pRO1944 or plasmid pRO1945. Maleylacetate reductase activity was induced in cells of P. aeruginosa or P. putida carrying plasmid pRO1945, as well as in cells of Pseudomonas strain PKO1, when grown on L-tyrosine, suggesting that the tyrosine catabolic pathway might be the source from which maleylacetate reductase is recruited for the degradation of TFD in pJP4-bearing cells of Pseudomonas sp. strain PKO1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号