首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The molecular mechanisms that enable multicellular organisms to sense and modulate their responses to hyperosmotic environments are poorly understood. Here, we employ Caenorhabditis elegans to characterize the response of a multicellular organism to osmotic stress and establish a genetic screen to isolate mutants that are osmotic stress resistant (OSR). In this study, we describe the cloning of a novel gene, osr-1, and demonstrate that it regulates osmosensation, adaptation, and survival in hyperosmotic environments. Whereas wild-type animals exposed to hyperosmotic conditions rapidly lose body volume, motility, and viability, osr-1(rm1) mutant animals maintain normal body volume, motility, and viability even upon chronic exposures to high osmolarity environments. In addition, osr-1(rm1) animals are specifically resistant to osmotic stress and are distinct from previously characterized osmotic avoidance defective (OSM) and general stress resistance age-1(hx546) mutants. OSR-1 is expressed in the hypodermis and intestine, and expression of OSR-1 in hypodermal cells rescues the osr-1(rm1) phenotypes. Genetic epistasis analysis indicates that OSR-1 regulates survival under osmotic stress via CaMKII and a conserved p38 MAP kinase signaling cascade and regulates osmotic avoidance and resistance to acute dehydration likely by distinct mechanisms. We suggest that OSR-1 plays a central role in integrating stress detection and adaptation responses by invoking multiple signaling pathways to promote survival under hyperosmotic environments.  相似文献   

2.
Epithelial cells of the thick ascending limb of Henle's loop (TALH cells) play a major role in the urinary concentrating mechanism. They are normally exposed to variable and often very high osmotic stress, which is particularly due to high sodium and chloride reabsorption and very low water permeability of the luminal membrane. It is already established that elevation of the activity of aldose reductase and hence an increase in intracellular sorbitol are indispensable for the osmotic adaptation and stability of the TALH cells. To identify new molecular factors potentially associated with the osmotic stress-resistant phenotype in kidney cells, TALH cells exhibiting low or high levels of resistance to osmotic stress were characterized using proteomic tools. Two-dimensional gel analysis showed a total number of 40 proteins that were differentially expressed in TALH cells under osmotic stress. Twenty-five proteins were overexpressed, whereas 15 proteins showed a down-regulation. Besides the sorbitol pathway enzyme aldose reductase, whose expression was 15 times increased, many other metabolic enzymes like glutathione S-transferase, malate dehydrogenase, lactate dehydrogenase, alpha enolase, glyceraldehyde-3-phosphate dehydrogenase, and triose-phosphate isomerase were up-regulated. Among the cytoskeleton proteins and cytoskeleton-associated proteins vimentin, cytokeratin, tropomyosin 4, and annexins I, II, and V were up-regulated, whereas tubulin and tropomyosins 1, 2, and 3 were down-regulated. The heat shock proteins alpha-crystallin chain B, HSP70, and HSP90 were found to be overexpressed. In contrast to the results in oxidative stress the endoplasmic reticulum stress proteins like glucose-regulated proteins (GRP78, GRP94, and GRP96), calreticulin, and protein-disulfide isomerase were down-regulated under hypertonic stress.  相似文献   

3.
The osmotic tolerance of cells of Saccharomyces cerevisiae as a function of glycerol concentration and temperature has been investigated. Results show that under isothermal conditions (25 degrees C) cells are resistant (94% viability) to hyperosmotic treatment at 49.2 MPa. A thigher osmotic pressure, cell viability decreases to 25% at 99 MPa. Yeast resistance to high osmotic stress (99 Mpa) is enhanced at low temperatures (5-11 degrees C). Therefore, the temperature at which hyperosmotic pressure is achieved greatly affects cell viability. These results suggest that temperature control is a suitable means of enhancing cell survival in response to osmotic dehydration.  相似文献   

4.
Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca2+ influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca2+ chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca2+-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.  相似文献   

5.
Solitary amoebae of Dictyostelium discoideum are frequently exposed to stressful conditions in nature, and their multicellular development is one response to environmental stress. Here we analyzed an aggregation stage abundant gene, krsA, homologous to human krs1 (kinase responsive to stress 1) to understand the mechanisms for the initiation of development and cell fate determination. The krsA- cells exhibited reduced viability under hyperosmotic conditions. They produced smaller aggregates on membrane filters and did not form aggregation streams on a plastic surface under submerged starvation conditions, but were normal in sexual development. During early asexual development, the expression of cAMP-related genes peaked earlier in the knockout mutants. Neither cAMP oscillation in starved cells nor an increase in the cAMP level following osmotic stress was observed in krsA-. The nuclear export signal, as well as the kinase domain, in KrsA was necessary for stream formation. These results strongly suggest that krsA is involved in cAMP relay, and that signaling pathways for multicellular development have evolved in unison with the stress response.  相似文献   

6.
Riedel K  Lehner A 《Proteomics》2007,7(8):1217-1231
Enterobacter sakazakii is considered an opportunistic food-borne pathogen, causing rare but significant illness especially in neonates. It has been proposed that the organism is relatively resistant to osmotic and dry stress compared to other species of the Enterobacteriaceae group. To understand the mechanisms involved in osmotic stress response, 2-DE protein analysis coupled to MALDI-TOF MS was employed to investigate changes in the protein profiles of E. sakazakii cells in response to two different types of osmotic stress (physical desiccation and growth in hyperosmotic media). In total, 80 differentially expressed protein spots corresponding to 53 different protein species were identified. Affiliation of proteins to functional categories revealed that a considerable number of the differentially expressed proteins from desiccated and hyperosmotic grown samples belonged to the same functional category but were regulated in opposite directions. Our data show that the protein pattern of NaCl-grown cultures reflect more or less a general down-regulation of central metabolic pathways, whereas adaptation of (non-growing) cells in a desiccated state represents an accumulation of proteins that serve some structural or protective role. The most striking effects observed for both types of osmotic stress in E. sakazakii were a significant down-regulation of the motility apparatus and the formation of filamentous cells.  相似文献   

7.
8.
9.
As a response to hyperosmotic stress bacterial cells accumulate compatible solutes by synthesis or by uptake. Beside the instant activation of uptake systems after an osmotic upshift, transport systems show also a second, equally important type of regulation. In order to adapt the pool size of compatible solutes in the cytoplasm to the actual extent of osmotic stress, cells down-regulate solute uptake when the initial osmotic stress is compensated. Here we describe the role of the betaine transporter BetP, the major uptake carrier for compatible solutes in Corynebacterium glutamicum, in this adaptation process. For this purpose, betP was expressed in cells (C. glutamicum and Escherichia coli), which lack all known uptake systems for compatible solutes. Betaine uptake mediated by BetP as well as by a truncated form of BetP, which is deregulated in its response to hyperosmotic stress, was dissected into the individual substrate fluxes of unidirectional uptake, unidirectional efflux and net uptake. We determined a strong decrease of unidirectional betaine uptake by BetP in the adaptation phase. The observed decrease in net uptake was thus mainly due to a decrease of Vmax of BetP and not a consequence of the presence of separate efflux system(s). These results indicate that adaptation of BetP to osmotic compensation is different from activation by osmotic stress and also different from previously described adaptation mechanisms in other organisms. Cytoplasmic K+, which was shown to be responsible for activation of BetP upon osmotic stress, as well as a number of other factors was ruled out as triggers for the adaptation process. Our results thus indicate the presence of a second type of signal input in the adaptive regulation of osmoregulated carrier proteins.  相似文献   

10.
Karandashova IV  Elanskaia IV 《Genetika》2005,41(12):1589-1600
Exposure to high concentrations of environmental NaCl exerts two stress effects on living cells, increasing the osmotic pressure and the concentration of inorganic ions. Salt stress dramatically suppresses the photosynthetic activity in cells of phototrophic organisms, such as cyanobacteria. During salt adaptation, cyanobacterial cells accumulate osmoprotectors, export excessive Na+ with the help of Na+/H+ antiporters, and actively absorb K+ with the help of K+-transporting systems. These physiological processes are accompanied by induction or suppression of several genes involved in salt adaptation. The review considers the main mechanisms responsible for the resistance of cyanobacterial cells to salt and hyperosmotic stresses. Special emphasis is placed on recent achievements in studying the genetic control of salt resistance and regulation of gene expression during adaptation of cyanobacteria to salt and hyperosmotic stresses.  相似文献   

11.
The p21-activated kinase, Shk1, is required for cell viability, establishment and maintenance of cell polarity, and proper mating response in the fission yeast, Schizosaccharomyces pombe. Previous genetic studies suggested that a presumptive protein methyltransferase, Skb1, functions as a positive modulator of Shk1. However, unlike Shk1, Skb1 is not required for viability or mating of S. pombe cells and contributes only modestly to the regulation of cell morphology under normal growth conditions. Here we demonstrate that Skb1 plays a more significant role in regulating cell growth and polarity under conditions of hyperosmotic stress. We provide evidence that the inability of skb1Delta cells to properly maintain cell polarity in hyperosmotic conditions results from inefficient subcellular targeting of F-actin. We show that Skb1 localizes to cell ends, sites of septation, and nuclei of S. pombe cells. Hyperosmotic shock results in substantial delocalization of Skb1 from cell ends and nuclei, as well as stimulation of Skb1 protein methyltransferase activity. Taken together, our results demonstrate a new role for Skb1 as a mediator of hyperosmotic stress response in fission yeast. We show that the protein methyltransferase activity of the human Skb1 homolog, Skb1Hs, is also stimulated by hyperosmotic stress in fission yeast, providing evidence for evolutionary conservation of a role for Skb1-related proteins as mediators of hyperosmotic stress response, as well as mechanisms involved in regulating this novel class of protein methyltransferases.  相似文献   

12.
The adaptation of cells to hyperosmotic conditions involves accumulation of organic osmolytes to achieve osmotic equilibrium and maintenance of cell volume. The Na+ and Cl-coupled betaine/GABA transporter, designated BGT-1, is responsible for the cellular accumulation of betaine and has been proposed to play a role in osmoregulation in the brain. BGT-1 is also called GAT2 (GABA transporter 2) when referring to the mouse transporter homologue. Using Western Blotting the expression of the mouse GAT2 protein was investigated in astrocyte primary cultures exposed to a growth medium made hyperosmotic (353±2.5 mosmol/kg) by adding sodium chloride. A polyclonal anti-BGT-1 antibody revealed the presence of two characteristic bands at 69 and 138 kDa. When astrocytes were grown for 24 h under hyperosmotic conditions GAT2 protein was up-regulated 2–4-fold compared to the level of the isotonic control. Furthermore, the expected dimer of GAT2 was also up-regulated after 24 h under the hyperosmotic conditions. The [3H]GABA uptake was examined in the hyperosmotic treated astrocytes, and characterized using different selective GABA transport inhibitors. The up-regulation of GAT2 protein was not affecting total GABA uptake but the hyperosmotic condition did change total GABA uptake possibly involving GAT1. Immunocytochemical studies revealed cell membrane localization of GAT2 throughout astroglial processes. Taken together, these results indicate that astroglial GAT2 expression and function may be regulated by hyperosmolarity in cultured mouse astrocytes, suggesting a role of GAT2 in osmoregulation in neural cells.  相似文献   

13.
Gadd45 proteins are induced by hyperosmolality in renal inner medullary (IM) cells, but their role for cell adaptation to osmotic stress is not known. We show that a cell line derived from murine renal IM cells responds to moderate hyperosmotic stress (540 mosmol/kg) by activation of G(2)/M arrest without significant apoptosis. If the severity of hyperosmotic stress exceeds the tolerance limit of this cell line (620 mosmol/kg) apoptosis is strongly induced. Using transient overexpression of ectopic Gadd45 proteins and simultaneous analysis of transfected versus non-transfected cells by laser-scanning cytometry, we were able to measure the effects of Gadd45 super-induction during hyperosmolality on G(2)/M arrest and apoptosis. Our results demonstrate that induction of all three Gadd45 isoforms inhibits mitosis and promotes G(2)/M arrest during moderate hyperosmotic stress but not in isosmotic controls. Furthermore, all three Gadd45 proteins are also involved in control of apoptosis during severe hyperosmotic stress. Under these conditions Gadd45gamma induction strongly potentiates apoptosis. In contrast, Gadd45alpha/beta induction transiently increases caspase 3/7 and annexin V binding before 12 h but inhibits later stages of apoptosis during severe hyperosmolality. These results show that Gadd45 isoforms function in common but also in distinct pathways during hyperosmolality and that their increased abundance contributes to the low mitotic index and protection of genomic integrity in cells of the mammalian renal inner medulla.  相似文献   

14.
Continuous pre-exposure of immune cells to low level of inflammatory stimuli makes them hyporesponsive to subsequent exposure. This pathophysiological adaptation; known as endotoxin tolerance is a general paradigm behind several disease pathogenesis. Current study deals with this immunosuppression with respect to BV2 microglia. We attempted to investigate their immune response under prolonged endotoxin exposure and monitor the same upon withdrawal of the stimuli. BV2 microglia cells were maintained under continual exposure of lipopolysaccharide (LPS) for weeks with regular passage after 72 hr (prolonged LPS exposed cells [PLECs]). PLECs were found to be immunosuppressed with diminished expression of proinflammatory cytokines (IL6, IL1β, TNF-α, and iNOS) and production of nitric oxide, as compared to once LPS exposed cells. Upon remaintenance of cells in normal media without LPS exposure (LPS withdrawal cells [LWCs]), the induced immunosuppression reversed and cells started responding to inflammatory stimuli; revealed by significant expression of proinflammatory cytokines. LWCs showed functional similarities to never LPS exposed cells (NLECs) in phagocytosis activity and their response to anti-inflammatory agents like dexamethasone. Despite their immunoresponsiveness, PLECs were inflamed and showed higher autophagy rate than NLECs. Additionally, we investigated the role of inhibitor of apoptotic proteins (IAPs) in PLECs to understand whether IAPs aids in the survival of microglial cells under stress conditions. Our results revealed that cIAP1 and cIAP2 are induced in PLECs which might play a role in retaining the viability. Furthermore, antagonism of IAPs has significantly induced cell death in PLECs suggesting the role of IAPs in microglial survival under stress condition. Conclusively, our data suggest that continuous exposure of BV2 microglia cells to LPS results in transient immunosuppression and indicates the involvement of IAPs in retaining their viability under inflammatory stress.  相似文献   

15.
The cell stress response encompasses the range of intracellular events required for adaptation to stimuli detrimental to cell survival. Although the c-Jun N-terminal kinase (JNK) is a stress-activated kinase that can promote either cell survival or death in response to detrimental stimuli, the JNK-regulated mechanisms involved in survival are not fully characterized. Here we show that in response to hyperosmotic stress, JNK phosphorylates a key cytoplasmic microtubule regulatory protein, stathmin (STMN), on conserved Ser-25 and Ser-38 residues. In in vitro biochemical studies, we identified STMN Ser-38 as the critical residue required for efficient phosphorylation by JNK and identified a novel kinase interaction domain in STMN required for recognition by JNK. We revealed that JNK was required for microtubule stabilization in response to hyperosmotic stress. Importantly, we also demonstrated a novel cytoprotective function for STMN, as the knockdown of STMN levels by siRNA was sufficient to augment viability in response to hyperosmotic stress. Our findings show that JNK targeting of STMN represents a novel stress-activated cytoprotective mechanism involving microtubule network changes.  相似文献   

16.
17.
Geobacter sulfurreducens is a delta-proteobacterium bacteria that has biotechnological applications in bioremediation and as biofuel cells. Development of these applications requires stabilization and preservation of the bacteria in thin porous coatings on electrode surfaces and in flow-through bioreactors. During the manufacturing of these coatings the bacteria are exposed to hyperosmotic stresses due to dehydration and the presence of carbohydrates in the medium. In this study we focused on quantifying the response of G. sulfurreducens to hyperosmotic shock and slow dehydration to understand the hyperosmotic damage mechanisms and to develop the methodology to maximize the survival of the bacteria. We employed FTIR spectroscopy to determine the changes in the structure and the phase transition behavior of the cell membrane. Hyperosmotic shock resulted in greatly decreased membrane lipid order in the gel phase and a less cooperative membrane phase transition. On the other hand, slow dehydration resulted in increased membrane phase transition temperature, less cooperative membrane phase transition and a small decrease in the gel phase lipid order. Both hyperosmotic shock and slow dehydration were accompanied by a decrease in viability. However, we identified that in each case the membrane damage mechanism was different. We have also shown that the post-rehydration viability could be maximized if the lyotropic phase change of the cell membrane was eliminated during dehydration. On the other hand, lyotropic phase change during re-hydration did not affect the viability of G. sulfurreducens. This study conclusively shows that the cell membrane is the primary site of injury during hyperosmotic stress, and by detailed analysis of the membrane structure as well as its thermodynamic transitions it is indeed possible to develop methods in a rational fashion to maximize the survival of the bacteria during hyperosmotic stress.  相似文献   

18.
19.
The major vault protein (MVP) is the major constituent of the vault particle, the largest ribonuclear protein complex described to date and is identical to lung resistance-related protein (LRP). Although MVP is also expressed in several normal tissues, little is known about its physiological role. MVP played a protective role against some xenobiotics and other stresses. We thus investigated the effect of osmotic stress on MVP expression by treating human colon cancer SW620 cells with sucrose or NaCl. The expression level of both MVP protein and MVP mRNA was increased by the osmostress. Sucrose or sodium chloride could also enhance MVP promoter activity. Inhibition of p38 MAPK in SW620 cells by SB203580 inhibited the expression of MVP under hyperosmotic stress. These findings suggested that osmotic stress up-regulated the MVP expression through p38 MAPK pathway. Down-regulation of MVP expression by MVP interfering RNA (RNAi) in SW620 cells increased the sensitivity of the cells to hyperosmotic stress and enhanced apoptosis. Furthermore, MVP RNAi prevented the osmotic stress-induced, time-dependent increase in phosphorylated Akt. These findings suggest that the PI3K/Akt pathway might be implicated in the cytoprotective effect of MVP.Our data demonstrate that exposure of cells to hyperosmotic stress induces MVP that might play an important role in the protection of the cells from the adverse effects of osmotic stress.  相似文献   

20.
Renal fibroblasts are thought to play a major role in the development of renal fibrosis (RF). The mechanisms leading to this renal alteration remain poorly understood. We performed differential proteomic analyses with two established fibroblast cell lines with RF phenotype to identify new molecular pathways associated with RF. Differential 2-DE combined with mass spectrometry analysis revealed the alteration of more than 30 proteins in fibrotic kidney fibroblasts (TK188) compared to normal kidney fibroblast (TK173). Among these proteins, markers of the endoplasmic reticulum (ER) stress- and the unfolded protein response (UPR) pathway (GRP78, GRP94, ERP57, ERP72, and CALR) and the oxidative stress pathway proteins (PRDX1, PRDX2, PRDX6, HSP70, HYOU1) were highly up-regulated in fibrotic cells. Activation of these stress pathways through long time exposition of TK173, to high NaCl or glucose concentrations resulted in TK188 like phenotype. Parallel to an increase in reactive oxygen species, the stressed cells showed significant alteration of fibrosis markers, ER-stress and oxidative stress proteins. Similar effects of osmotic stress could be also observed on renal proximal tubule cells. Our data suggest an important role of the ER-stress proteins in fibrosis and highlights the pro-fibrotic effect of osmotic stress through activation of oxidative stress and ER-stress pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号