首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Systematic Parasitology - Three new feather mite species of the Nycteridocaulus generic group (Proctophyllodidae: Proctophyllodinae) are described from passerines in Panama: Atrichophyllodes...  相似文献   

2.
The aim of the paper was to determine the infestation parameters and species composition of eriophyoid mites for different parts of Norway spruce and Scots pine as well as for different age groups of the trees. The observations on the occurrence of the mites were conducted in 2004 and 2005 in 4 locations distributed in various regions of Poland, accounting for 11 environments (location x year). Three plant age groups were studied: (1) adult trees: 40–60 years old, additionally divided into three levels: top, middle and bottom; (2) young trees: 6–10 years old; and (3) seedlings: 2–3 years old. The same number of species (five) occurred on each coniferous tree, but only one, the rarest, was common on both tree species. Out of 500 samples for each species, mites were found on 279 pine (55.8%) and 252 spruce samples (50.2%). No tendency for the mites to choose any particular level on Scots pine and Norway spruce was observed. In addition, no tendency for the mites to choose trees from any of the age groups was observed for both Scots pine and Norway spruce, in the latter case the result obtained also for mite species subdivided into vagrant and refuge-seeking ones. Final conclusions were that in case of adult trees samples can be taken from the bottom part of a tree; however, sampling from young trees growing among adult trees may be seen as the most efficient sampling method.  相似文献   

3.
Phylogenetic relationships of mangabeys within the Old World monkey tribe Papionini are inferred from analyses of nuclear DNA sequences from five unlinked loci. The following conclusions are strongly supported, based on congruence among trees derived for the five separate gene regions: (1) mangabeys are polyphyletic within the Papionini; (2) Cercocebus is the sister taxon to the genus Mandrillus; and (3) Lophocebus belongs to a clade with Papio and Theropithecus, with Papio as its most likely sister taxon. Morphologically based phylogenies positing mangabey monophyly were evaluated by mapping the sequences for each locus on these trees. The data seem to fit these trees poorly in both maximum-parsimony and likelihood analyses. Incongruence among nuclear gene trees occurred in the interrelationships among Lophocebus, Papio, and Theropithecus. Several factors that may account for this incongruence are discussed, including sampling error, random lineage sorting, and introgression.   相似文献   

4.
Four new species of the feather mite genus Proctophyllodes are described from the birds of the order Passeriformes in China:P.flexuosa sp.nov.from Eophona migratoria Hartert(Chongqing),P.brevis sp.nov.from Passer montanus(Linnaeus)(Anhui and Chongqing),P.garrula sp.nov.from Garrulax poecilorhynchus Gould(Anhui),P.canora sp.nov.from Garrulax canorus(Linnaeus)(Guizhou).  相似文献   

5.
Summary Two species of feather mites, Alloptes (A.) sp. and Laronyssus martini, coexisted on the flight feathers of kittiwakes, while Alloptes (C.) sp. occurred alone on murres. All three species were found mostly on the ventral surface of mid-wing regions. On individual feathers, the mites were attached to the distal sides of barbs on the trailing vanes. The two species coexisted on kittiwakes but occupied different portions of feathers. The results suggest that the two species compete for the attachment site on the feather and Alloptes (A.) sp. is excluded by L. martini from the preferred microhabitat.  相似文献   

6.
The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group.  相似文献   

7.
A process of infecting the chaffinch nestlings Fringilla coelebs with three analgoid feather mites, Analges passerinus L., 1758, Monojoubertia microphylla (Robin, 1877), and Pteronyssoides striatus (Robin, 1977), commonly occurred on this bird species was investigated. 15 nests contained totally 65 nestlings, from 2 to 6 individuals in a brood, have been examined from the day of hatching till 11th day. Observations were held in the neighbourhood of the bird banding station "Rybachy" (Russia, Kaliningrad Province) in June of 1982. Number of mites on alive nestlings taken temporarily from their nest was counted by means of binocular lens under the magnification x12.5 and x25. The nestlings receive the mites from the chaffinch female during the night time, when the female sits together with the young birds and heats them. In the condition of this prolonged direct contact the mites migrate from the female onto the nestlings. As it was shown in our study of seasonal dynamics of mites on the chaffinch (Mironov, 2000), the chaffinch female only gives its mites to young generation and looses about three quarter of its mite micropopulation during the nesting period (June), hile in the chaffinch males the number of mites continues to increase during all summer. The infections with three feather mite species happen in the second part of the nestling's stay in the nest. The starting time of this process, its intensity, and sex and age structure of mite micropopulations on the nestlings just before their leaving the nest are different in the mite species examined. These peculiarities of feather mite species are determined by the biology of examined species, and first of all by their morphological characteristic and specialisation to different microhabitats, i.e. certain structural zones of plumage. Pteronyssoides striatus (Pteronyssidae) is rather typical mite specialised to feathers with vanes. In adult birds with completely developed plumage this species occupies the ventral surface of the big upper coverts of primary flight feathers. This species appears on the chaffinch nestlings in a significant number on 7th day. The mites occupy the basal parts of primary flight feathers represented in that moment by the rods only. They sit on practically open and smooth surface of this microhabitat, which is uncommon for them, because the vanes of the big upper coverts are not yet open and also represented by thin rods. During the period of the last 5 days (from 7 to 11th day) the mean number of mites per one nestling increases from 2.3 +/- 0.5 to 17.1 +/- 1.8 mites. Just before the day, when the nestling leave the nest, the tritonymphs absolutely predominate (82.4%) in the micropopulation of P. striatus. Analges passerinus (Analgidae) is specialised to live in the friable layer formed by numerous not-engaged thread barbles of the down feathers and basal parts of the body covert feathers. Mites have special hooks on legs used for hard attaching to the barbles and for fast moving in the friable layer of feathers. On the chaffinch nestlings, these mites appear usually on 8th day, when the rod-like body covert feathers begin to open on apices and form short brushes; however some individuals occur on the skin of nestlings even on 6th day. The mean number of mites per nestling on the 11th day reaches 16.5 +/- 1.4 individuals. The micropopulation of A. passerinus is represented on the nestlings mainly by the females (45.5%), tritonymphs (23.6%) and males (11.5%). Monojobertia microphylla (Proctophyllodidae) is a typical dweller of feathers with large vanes. Mites of this species commonly occupy the ventral surface of primary and secondary flight feathers and also respective big upper covert feathers of wings. M. microphylla appears on the nestlings in a significant number (7.1 +/- 1.2 mites) on 9th day, only when the primary flight feathers already have short vanes about 10 mm in length. In next three days the number of mites increases very fast and reaches on 11th day 60.3 +/- 5.7 mites per nestling. In the micropopulation of this species, the tritonymphs count 38.3%, and the quota of males and females is 25.3% each. The migration of this species goes most intensively, than in two other species. An analitic selection of logistic curves shows, that the increasing of mite number during the process of infection with three mite species may be most adequately described by the sigmoid curves with clearly recognizable levels of saturation, which can be theoretically reached. Indeed, the number of mite individuals being able to migrate onto the nestlings is limited by their number on a respective chaffinch female. In a contrast, the increasing of plumage indices, for instance the length of flight feathers, has almost linear character during the period of observation. The beginning of mite migration is determined by the development of respective microhabitats in the plumage of nestlings, or at least by the development of certain structure elements of plumage, where mites are able to attach for a while, before that moment, when the nestlings will develop the plumage completely and begin to fly. In three mite species examined, the process of infection was performed by older stages, namely by the imago and/or tritonymphs. This can be explained by two reasons. On the one hand, the older stages are most active in their movement, resistible and able to survive successfully on new host individuals. On the other hand, the older stage are ready for the reproduction or will be ready after one moulting. The older stages of mites can quickly create a large and self-supporting micropopulations on the birds, therefore this strategy ensures a successful subsequent existence of the parasite species. In cases, when mites (A. passerinus, M. microphylla) migrate into the respective microhabitats structurally corresponding to their normal microhabitats on adult birds, the micropopulations of these mite species include a significant or dominant quota of females and males. When the normal microhabitat is not yet formed, feather mites migrate into neighboring structure elements of plumage, where they can survive and wait for the development of normal microhabitat, to which they are well adapted. Therefore, in the case of P. striatus, its micropopulations on the chaffinch nestlings are represented mainly by the tritonymphs.  相似文献   

8.
Abstract Seven new feather mite species of the family Pterolichidae are described from various Australian parrots: Apexolichus lathami sp. n. from the swift parrot, Lathamus discolor (Shaw); Titanolichus platycerci sp. n. and Rhytidelasma punctata sp. n. from the pale-headed rosella, Platycercus adscitus (Latham); R. striata sp. n. from the Australian king-parrot, Alisterus scapularis (Lichtenstein); Lorilichus stenolobus sp. n. and Lorilichus curvilobus sp. n. from the rainbow lorikeet, Trichoglossus haematodus (Linnaeus); Psittophagus galahi sp. n. from the galah, Eolophus roseicapillus (Vieillot). We give a brief overview of taxonomic studies of pterolichid mites living on Psittaciformes, and discuss the main diagnostic characters of different generic groups of these mites.  相似文献   

9.
The distribution of parasitic mites of the Psoroptidia group on mammals was analyzed. Nearly all the mammal-associated Psoroptidia belong to the paraphyletic superfamily Sarcoptoidea. Mites of the family complex Psoroptidae (Lobalgidae, Psoroptidae, and Paracoroptinae) shifted from birds to parasitism on placental mammals independently from each other. Mites of the Sarcoptidae complex, comprising all the other mammal-associated Psoroptidia, originated from the common stalk of Psoroptidia independently. They are widely represented on both marsupial and placental mammals and are primarily or secondarily absent on Monotremata.  相似文献   

10.
Bochkov AV 《Parazitologiia》2011,45(4):257-272
Host-parasite relationships of mammals and astigmatan mites (Acariformes: Astigmata) belonging to the parvorder Psoroptidia are analyzed. The absolute majority of mammal-associated psoroptidians belongs to the paraphyletic superfamily Sarcoptoidea. Mites of the family complex Psoroptidae (Lobalgidae, Psoroptidae, and Paracoroptinae) shifted from birds to placental mammals independently from each other. Mites of the family complex Sarcoptidae, including all other sarcoptoid families, derived from the common stalk of Psoroptidia independently from the Psoroptid complex. Mites of the sarcoptid complex shifted from nidicoly in mammalian nests to the permanent parasitism on these hosts. They are widely represented on both marsupial and placental mammals and are absent on Monotremata.  相似文献   

11.
Two new species of the feather mite genus Proctophyllodes Robin, 1868 (Analgoidea: Proctophyllodidae) are described from two passerine birds (Passeriformes) in Europe: Proctophyllodes markovetsi n. sp. from the tawny pipit Anthus campestris (L.) (Motacillidae) and P. loxiae n. sp. from the red crossbill Loxia curvirostra (L.) (Fringillidae). Males of P. markovetsi are most clearly distinguished from the closely related P. tchagrae Atyeo & Braasch, 1966 by having greater terminal lamellae (30–40 × 20–25 µm), the tips of genital arch curved medially, and the corolla of the anal sucker with 14–15 denticles; females of this species are characterised by the terminal appendages distinctly longer than the lobar region width. Males of P. loxiae differ from the closest species, P. fuchsi Mironov, 1997, by having smaller terminal lamellae (45–50 × 22–28 μm), the genital organ extending beyond the posterior margin of lamellae by half their length; females can be distinguished by having the terminal cleft noticeably wider than long (28–30 × 35–40 μm).  相似文献   

12.
A phylogenetic reconstruction of feather mites of the epidermoptid complex (Analgoidea: Epidermoptidae, Dermationidae, and Knemidocoptidae) was carried out by methods of parsimony-based cladistics. The epidermoptid complex splits into two major branches, Epidermoptidae and Dermationidae. The family Dermationidae is monophyletic, while the Epidermoptidae, as previously defined, is paraphyletic. The family Knemidocoptidae is reduced to the subfamilial rank because it arises from the core of the Epidermoptidae. The subfamily Myialginae Trouessart, 1906 stat. resur. is restored within the Epidermoptidae. The aberrant genera Lukoschuscoptes and Apocnemidocoptes are moved from Knemidocoptidae to Epidermoptidae and Dermationidae, respectively. A hypothesis explaining main trends in morphological and ecological adaptations to parasitism on birds within the epidermoptid complex is proposed. New taxonomic diagnoses for higher taxa (families and subfamilies) are provided, and three new genera—Archemyialges gen. n., Hemimyialges gen. n. (Epidermoptidae), and Trochiloptes gen. n. (Dermationidae)—and a new subfamily—Apocnemidocoptinae—are established.  相似文献   

13.
Earth mites are major winter pests of a variety of crops and pastures in southern Australia. Competition between four earth mite species was investigated using field and shadehouse experiments. The influence of different plant hosts on the frequency and intensity of competitive interactions also were examined. This information is important, because control attempts that eradicate one species of mite could be directly followed by an increase in abundance of another earth mite species. There were strong effects of intraspecific competition on the reproductive rate of species, while interspecific interactions between Halotydeus destructor (Tucker) and Penthaleus species and between the three Penthaleus species also were detected. Competitive abilities were altered on the different plant types. On pasture, the competitive advantage swayed between Penthaleus major (Dugés), H. destructor, and Penthaleus falcatus (Qin & Halliday). Penthaleus sp. x was the strongest competitor in a mixture of wheat, Triticum aestivum (L.), and oats, Avena sativa (L.), whereas on canola, Brassica napus (L.), and bristly ox-tongue, Picris echioides (L.), P. falcatus, and H. destructor were superior competitors. These results suggest that competition is a strong force influencing the abundance of earth mites in the field and that host plant factors are important in shaping the type of interactions. This highlights the importance of identifying mite species when considering control options and suggests that effective control recommendations need to be developed for each individual species.  相似文献   

14.
15.
It is well known that phylogenetic trees derived from different protein families are often incongruent. This is explained by mapping errors and by the essential processes of gene duplication, loss, and horizontal transfer. Therefore, the problem is to derive a "consensus" tree best fitting the given set of gene trees. This work presents a new method of deriving this tree. The method is different from the existing ones, since it considers not only the topology of the initial gene trees, but also the reliability of their branches. Thereby one can explicitly take into account the possible errors in the gene trees caused by the absence of reliable models of sequence evolution, by uneven evolution of different gene families and taxonomic groups, etc.  相似文献   

16.
17.
Leaf samples were collected from sprayed (n=29) and unsprayed (n=19) apple orchards, from the surrounding vegetation (n=58) and from one arboretum (n=12), altogether from 46 plant species (1–5 samples each). The density of phytoseiid mites averaged 1.2 mites/leaf on unsprayed apple trees, but only 0.06 mites/leaf on sprayed trees. The phytoseiid density exceeded 1/leaf onAesculus hippocastani, Aristolochia macrophylla, Corylus avellana, Fragaria vesca, Frxinus excelsior, Juglans cinerea, Pterocarya rhoifolia, Ribes nigrum, Rubus odoratus, Sorbus aucuparia, S. thuringiaca, Tilia×euchlora andUlmus glabra. Other common trees and bushes inhabited by phytoseiids wereCrataegus coccinea (0.2 mites/leaf),Prunus padus (0.7),Salix caprea (0.4), andTilia cordata (0.9).Twelve species of phytoseiid mites were found, of which ten occurred on unsprayed apple trees. The most widely distributed species on apple trees werePhytoseius macropilis (in 79% of unsprayed samples),Euseius finlandicus (74%),Paraseiulus soleiger (53%),Paraseiulus triporus (37%),Amblyseius canadensis (26%) andAnthoseius rhenanus (26%). The highest densities on apple trees were found in populations ofE. finlandicus (mean 0.7 mites/leaf),Ph. macropilis (0.5) andA. canadensis (0.5). On sprayed apple trees,E. finlandicus, Pa. soleiger andPh. macropilis occurred most commonly, but their mean densities were under 0.1/leaf. Almost no phytoseiids were found in orchards sprayed with oxydemetonmethyl before blooming of apple.On other plants,E. finlandicus occurred most commonly (on 33 plant species) and in the highest densities, followed byPh. macropilis (14),Pa. soleiger (12),Pa. triporus (12) andAn. rhenanus (7).Seiulus aceri andParaseiulus talbii were identified as new phytoseiid species in Finland. It is concluded that deciduous trees and bushes in forest margins around orchards can serve as important reservoirs for phytoseiid mites, and that the dominant species in these plants would migrate into and colonize the orchards if the use of harmful chemicals were restricted.  相似文献   

18.
The properties of random gene tree topologies have recently been studied under a coalescent model that treats a species tree as a fixed parameter. Here we develop the analogous theory for random ranked gene tree topologies, in which both the topology and the sequence of coalescences for a random gene tree are considered. We derive the probability distribution of ranked gene tree topologies conditional on a fixed species tree. We then show that similar to the unranked case, ranked gene trees that do not match either the ranking or the topology of the species tree can have greater probability than the matching ranked gene tree.  相似文献   

19.
The chromosome number and morphology of two species of the family Laelapidae have been determined: Hypoaspis aculeifer Canestrini, 1887 has 9() and 18() chromosomes and Cosmolaelaps miles Berlese, 1914 7() and 14(). Both karyotypes have monokinetic chromosomes and show obvious similarity. The longest chromosome of both species consists of a normal and a heterochromatic arm. The two laelapid mites prove to be arrhenotokous, as unfertilized females lay eggs from which only males arise. A theory has been postulated that within the Gamasida an evolutionary line towards arrhenotoky is present.Arguments supporting an independent evolution of sex determining system in the two acarine taxa Actinotrichida and Anactinotrichida are discussed.  相似文献   

20.
The pest potential of stored product mites depends on the reproduction rate that is affected by the environmental conditions. In this study we investigated the effect of temperature, ranging from 5 to 35°C, on the population growth of three important mite species, Acarus siro, Tyrophagus putrescentiae and Auleroglyphus ovatus at 85% r.h. Starting with 10 individuals the population increase of mites was observed after 3 weeks of cultivation, or after 6 weeks for those kept at low temperatures (5, 10, 12.5, and 15°C). The rate of increase was calculated for each temperature and species. The obtained data were fitted with polynomial models. The mite population growth rates increased with increasing moderate temperatures until 25°C, when r m -values were 0.179, 0.177 and 0.190 for A. siro, A. ovatus and T. putrescentiae, respectively. The lower development threshold was 10.2°C in all three species. Estimated upper temperature threshold was higher in T. putrescentiae (49°C) than in A. siro and A. ovatus (38°C). Simulation of the rate of population increase under ideal conditions, using real temperature records obtained from Czech grain stores, showed that the pest mite populations increase only during 3.5 months within a typical 9-month storage season in Central Europe. These results indicate that control of mites, be it chemical, physical or biological, is recommended during the months when allergens and pests are produced, i.e. from September to mid November and in May.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号