首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Disorders of mitochondrial DNA (mtDNA) maintenance have emerged as an important cause of human genetic disease, but demonstrating the functional consequences of de novo mutations remains a major challenge. We studied the rate of depletion and repopulation of mtDNA in human fibroblasts exposed to ethidium bromide in patients with heterozygous POLG mutations, POLG2 and TK2 mutations. Ethidium bromide induced mtDNA depletion occurred at the same rate in human fibroblasts from patients and healthy controls. By contrast, the restoration of mtDNA levels was markedly delayed in fibroblasts from patients with compound heterozygous POLG mutations. Specific POLG2 and TK2 mutations did not delay mtDNA repopulation rates. These observations are consistent with the hypothesis that mutations in POLG impair mtDNA repopulation within intact cells, and provide a potential method of demonstrating the functional consequences of putative pathogenic alleles causing a defect of mtDNA synthesis.  相似文献   

2.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

3.
4.
Mitochondrial DNA (mtDNA) is replicated by the DNA polymerase g in concert with accessory proteins such as the mtDNA helicase, single stranded DNA binding protein, topoisomerase, and initiating factors. Nucleotide precursors for mtDNA replication arise from the mitochondrial salvage pathway originating from transport of nucleosides, or alternatively from cytoplasmic reduction of ribonucleotides. Defects in mtDNA replication or nucleotide metabolism can cause mitochondrial genetic diseases due to mtDNA deletions, point mutations, or depletion which ultimately cause loss of oxidative phosphorylation. These genetic diseases include mtDNA depletion syndromes such as Alpers or early infantile hepatocerebral syndromes, and mtDNA deletion disorders, such as progressive external ophthalmoplegia (PEO), ataxia-neuropathy, or mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). This review focuses on our current knowledge of genetic defects of mtDNA replication (POLG, POLG2, C10orf2) and nucleotide metabolism (TYMP, TK2, DGOUK, and RRM2B) that cause instability of mtDNA and mitochondrial disease.  相似文献   

5.
The human gene POLG encodes the catalytic subunit of mitochondrial DNA polymerase, but its precise roles in mtDNA metabolism in vivo have not hitherto been documented. By expressing POLG fusion proteins in cultured human cells, we show that the enzyme is targeted to mitochondria, where the Myc epitope-tagged POLG is catalytically active as a DNA polymerase. Long-term culture of cells expressing wild-type POLG-myc revealed no alterations in mitochondrial function. Expression of POLG-myc mutants created dominant phenotypes demonstrating important roles for the protein in mtDNA maintenance and integrity. The D198A amino acid replacement abolished detectable 3'-5' (proofreading) exonuclease activity and led to the accumulation of a significant load (1:1700) of mtDNA point mutations during 3 months of continuous culture. Further culture resulted in the selection of cells with an inactivated mutator polymerase, and a reduced mutation load in mtDNA. Transient expression of POLG-myc variants D890N or D1135A inhibited endogenous mitochondrial DNA polymerase activity and caused mtDNA depletion. Deletion of the POLG CAG repeat did not affect enzymatic properties, but modestly up-regulated expression. These findings demonstrate that POLG exonuclease and polymerase functions are essential for faithful mtDNA maintenance in vivo, and indicate the importance of key residues for these activities.  相似文献   

6.
These tables list both published and a number of unpublished mutations in genes associated with early onset defects in mitochondrial DNA (mtDNA) maintenance including C10orf2, SUCLG1, SUCLA2, TYMP, RRM2B, MPV17, DGUOK and TK2. The list should not be taken as evidence that any particular mutation is pathogenic. We have included genes known to cause mtDNA depletion, excluding POLG1, because of the existing database (http://tools.niehs.nih.gov/polg/). We have also excluded mutations in C10orf2 associated with dominant adult onset disorders.  相似文献   

7.
Combined morphological, immunocytochemical, biochemical and molecular genetic studies were performed on skeletal muscle, heart muscle and liver tissue of a 16‐months boy with fatal liver failure. The pathological characterization of the tissues revealed a severe depletion of mtDNA (mitochondrial DNA) that was most pronounced in liver, followed by a less severe, but still significant depletion in skeletal muscle and the heart. The primary cause of the disease was linked to compound heterozygous mutations in the polymerase γ (POLG) gene (DNA polymerase γ; A467T, K1191N). We present evidence, that compound heterozygous POLG mutations lead to tissue selective impairment of mtDNA replication and thus to a mosaic defect pattern even in the severely affected liver. A variable defect pattern was found in liver, muscle and heart tissue as revealed by biochemical, cytochemical, immunocytochemical and in situ hybridization analysis. Functionally, a severe deficiency of cytochrome‐c‐oxidase (cox) activity was seen in the liver. Although mtDNA depletion was detected in heart and skeletal muscle, there was no cox deficiency in these tissues. Depletion of mtDNA and microdissection of cox‐positive or negative areas correlated with the histological pattern in the liver. Interestingly, the mosaic pattern detected for cox‐activity and mtDNA copy number fully aligned with the immunohistologically revealed defect pattern using Pol γ, mtSSB‐ and mtTFA‐antibodies, thus substantiating the hypothesis that nuclear encoded proteins located within mitochondria become unstable and are degraded when they are not actively bound to mtDNA. Their disappearance could also aggravate the mtDNA depletion and contribute to the non‐homogenous defect pattern.  相似文献   

8.
9.
Thymidine kinase 2 (TK2) is a mitochondrial (mt) pyrimidine deoxynucleoside salvage enzyme involved in mtDNA precursor synthesis. The full-length human TK2 cDNA was cloned and sequenced. A discrepancy at amino acid 37 within the mt leader sequence in the DNA compared with the determined peptide sequence was found. Two mutations in the human TK2 gene, His-121 to Asn and Ile-212 to Asn, were recently described in patients with severe mtDNA depletion myopathy (Saada, A., Shaag, A., Mandel, H., Nevo, Y., Eriksson, S., and Elpeleg, O. (2001) Nat. Genet. 29, 342-344). The same mutations in TK2 were introduced, and the mutant enzymes, prepared in recombinant form, were shown to have similar subunit structure to wild type TK2. The I212N mutant showed less than 1% activity as compared with wild type TK2 with all deoxynucleosides. The H121N mutant enzyme had normal K(m) values for thymidine (dThd) and deoxycytidine (dCyd), 6 and 11 microm, respectively, but 2- and 3-fold lower V(max) values as compared with wild type TK2 and markedly increased K(m) values for ATP, leading to decreased enzyme efficiency. Competition experiments revealed that dCyd and dThd interacted differently with the H121N mutant as compared with the wild type enzyme. The consequences of the two point mutations of TK2 and the role of TK2 in mt disorders are discussed.  相似文献   

10.
11.
The Mendelian inherited progressive external ophthalmoplegia (PEO) and mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) are genetically heterogeneous mitochondrial diseases caused by nuclear-mitochondrial intergenomic defects. The PEO1 and TYMP nuclear genes are closely related in the machinery of the mitochondrial DNA (mtDNA) replication. Mutations in PEO1 and TYMP genes usually cause autosomal dominant PEO, and autosomal recessive MNGIE. We identified a PEO family of Korean origin with additional phenotype of incomplete MNGIE symptom (Family ID: MT16). The entire mitochondrial genome and all coding exons of PEO1, TYMP, ANT1, POLG1, POLG2, DGUOK, and TK2 nuclear genes were sequenced. Clinical information was obtained through history taking, physical examinations, clinical observations, and electrophysiological investigations. Muscle biopsy of left biceps brachii and shoulder magnetic resonance imaging (MRI) were undertaken. We found two heterozygous mutations, Arg374Gln in PEO1 and Glu106Gln in TYMP from the proband who showed complex phenotypes of a typical PEO and late-onset incomplete MNGIE. The PEO1 Arg374Gln has been reported in several PEO patients, but TYMP Glu106Gln has not been reported. Neither large deletion nor causative point mutations were observed in the mtDNA. We suggest that the heterozygous TYMP mutation might affect complex phenotypes as a secondary genetic cause in the co-presence of PEO1 mutation.  相似文献   

12.
Germline mutations in mitochondrial DNA polymerase gamma (POLG1) induce mitochondrial DNA (mtDNA) mutations, depletion, and decrease oxidative phosphorylation. Earlier, we identified somatic mutations in POLG1 and the contribution of these mutations in human cancer. However, a role for germline variations in POLG1 in human cancers is unknown. In this study, we examined a role for disease associated germline variants of POLG1, POLG1 gene expression, copy number variation and regulation in human cancers. We analyzed the mutations, expression and copy number variation in POLG1 in several cancer databases and validated the analyses in primary breast tumors and breast cancer cell lines. We discovered 5-aza-2''-deoxycytidine led epigenetic regulation of POLG1, mtDNA-encoded genes and increased mitochondrial respiration. We conducted comprehensive race based bioinformatics analyses of POLG1 gene in more than 33,000 European-Americans and 5,000 African-Americans. We identified a mitochondrial disease causing missense variation in polymerase domain of POLG1 protein at amino acid 1143 (E1143G) to be 25 times more prevalent in European-Americans (allele frequency 0.03777) when compared to African-American (allele frequency 0.00151) population. We identified T251I and P587L missense variations in exonuclease and linker region of POLG1 also to be more prevalent in European-Americans. Expression of these variants increased glucose consumption, decreased ATP production and increased matrigel invasion. Interestingly, conditional expression of these variants revealed that matrigel invasion properties conferred by these germline variants were reversible suggesting a role of epigenetic regulators. Indeed, we identified a set of miRNA whose expression was reversible after variant expression was turned off. Together, our studies demonstrate altered genetic and epigenetic regulation of POLG1 in human cancers and suggest a role for POLG1 germline variants in promoting tumorigenic properties.  相似文献   

13.
DNA polymerase gamma (pol gamma ) is required to maintain the genetic integrity of the 16,569-bp human mitochondrial genome (mtDNA). Mutation of the nuclear gene for the catalytic subunit of pol gamma (POLG) has been linked to a wide range of mitochondrial diseases involving mutation, deletion, and depletion of mtDNA. We describe a heterozygous dominant mutation (c.1352G-->A/p.G451E) in POLG2, the gene encoding the p55 accessory subunit of pol gamma , that causes progressive external ophthalmoplegia with multiple mtDNA deletions and cytochrome c oxidase (COX)-deficient muscle fibers. Biochemical characterization of purified, recombinant G451E-substituted p55 protein in vitro revealed incomplete stimulation of the catalytic subunit due to compromised subunit interaction. Although G451E p55 retains a wild-type ability to bind DNA, it fails to enhance the DNA-binding strength of the p140-p55 complex. In vivo, the disease most likely arises through haplotype insufficiency or heterodimerization of the mutated and wild-type proteins, which promote mtDNA deletions by stalling the DNA replication fork. The progressive accumulation of mtDNA deletions causes COX deficiency in muscle fibers and results in the clinical phenotype.  相似文献   

14.
The presence of mtDNA abnormalities inherited as Mendelian traits indicates the existence of mutations in nuclear genes affecting the integrity of the mitochondrial genome. Two groups of nucleus-driven abnormalities have been described: qualitative alterations of mtDNA, i.e. multiple large-scale deletions of mtDNA, and quantitative decrease of the mtDNA copy number, i.e. tissue-specific depletion of mtDNA. Autosomal dominant or recessive (adPEO), progressive ophthalmoplegia and autosomal-recessive mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), are three neurodegenerative disorders associated with the coexistence of wild-type mtDNA with several deletion-containing mtDNA species. Heterozygous mutations of the genes encoding the muscle-heart isoform of the adenosine diphosphate/adenosine triphosphate mitochondrial translocator (ANT1), the main subunit of polymerase gamma (POLG1), and of the putative mtDNA helicase (Twinkle) have been found in adPEO families linked to three different loci, on chromosomes 4q34-35, 10q24, and 15q25, respectively. Mutations in the gene encoding thymidine phosphorylase have been identified in several MNGIE patients. Severe, tissue-specific depletion of mtDNA is the molecular hallmark of rapidly progressive hepatopathies or myopathies of infancy and childhood. Two genes, deoxyguanosine kinase and thymidine kinase type 2, both involved in the mitochondrion-specific salvage pathways of deoxynucleotide pools, have been associated with depletion syndromes in selected families.  相似文献   

15.
为了探索POLG1外显子1、3、4、7突变与弱精子症的相关性及对mtDNA序列突变和4977bp缺失的影响,按WHO标准收集了120例弱精子症和101例精子活力正常的精液标本,经PCR测序分析POLG1外显子1、3、4、7突变,继而测序检测9例外显子4c.948G〉A突变的弱精子症标本、9例无C.948G〉A突变的弱精子症标本和9例正常对照标本的mtDNA全序列,利用巢式PCR技术分析94Pie.948G〉A突变标本、9例无C.948G〉A突变的弱精子症标本和9例对照标本的4977bp缺失。结果显示:在120例弱精子症中发现P说G,外显子4c.948G〉A突变9例(7.5%),显著高于对照组(0%,P〈0.05)。c.948G〉A突变组mtDNA全序中突变率与对照组比无统计学差异俨〉0.05)。作者关注的两组中,突变数有差异的位点累积突变频次突变组显著高于对照组俨〈0.05),但与无C.948G〉A突变的弱精子症标本的累积突变频次比较无统计学意义;突变组mtDNA4977bp缺失率(7/9,77.8%)显著高于对照组(2/9,22.2%,P〈0.05)和无c.948G〉A突变的弱精子症组(2/9,22.2%,P〈0.05)。以上结果提示,弱精子症的发生可能与POLG,c.948G〉A突变有相关性,弱精子症线粒体DNA某些位点的累积突变率增高,但可能不是POLGlc.948G〉A突变引起;c.948G〉A突变可能会增加mtDNA4977bp缺失,从而影响精子线粒体功能,导致精子活动力下降。  相似文献   

16.
Mitochondrial medicine   总被引:4,自引:0,他引:4  
After reviewing the history of mitochondrial diseases, I follow a genetic classification to discuss new developments and old conundrums. In the field of mitochondrial DNA (mtDNA) mutations, I argue that we are not yet scraping the bottom of the barrel because: (i) new mtDNA mutations are still being discovered, especially in protein-coding genes; (ii) the pathogenicity of homoplasmic mutations is being revisited; (iii) some genetic dogmas are chipped but not broken; (iv) mtDNA haplotypes are gaining interest in human pathology; (v) pathogenesis is still largely enigmatic. In the field of nuclear DNA (nDNA) mutations, there has been good progress in our understanding of disorders due to faulty intergenomic communication. Of the genes responsible for multiple deletions and depletion of mtDNA, mutations in POLG have been associated with a great variety of clinical phenotypes in humans and to precocious aging in mice. Novel pathogenetic mechanisms include alterations in the lipid milieu of the inner mitochondrial membrane and mutations in genes controlling mitochondrial motility, fission, and fusion.  相似文献   

17.
18.
Autosomal-dominant progressive external ophthalmoplegia (adPEO) is a mitochondrial disorder that is characterized by accumulation of multiple mitochondrial DNA (mtDNA) deletions in postmitotic tissues. The disorder is heterogeneous, with five known nuclear disease genes that encode the proteins ANT1, Twinkle, POLG, POLG2, and OPA1. Defects in these proteins affect mtDNA maintenance, probably leading to stalled replication forks, consequent mtDNA deletion formation, and progressive respiratory chain deficiency. Here we present a large adPEO family with multiple mtDNA deletions, whose disease was not explained by mutations in any of the known adPEO loci. We mapped the disease locus in this family to chromosome 8q22.1-q23.3. The critical linkage region contained the RRM2B gene, which encodes the small subunit of the ribonucleotide reductase p53R2, which has previously been shown to be essential for the maintenance of mtDNA copy number. Mutation screening of RRM2B revealed a heterozygous nonsense mutation in exon 9 (c.979C→T [p.R327X]) in all affected individuals that was absent in 380 control chromosomes. The same mutation was found to segregate in another adPEO family. The mutant mRNA escaped nonsense-mediated decay and resulted in a protein with truncation of 25 highly conserved C-terminal amino acids essential for the interaction with the ribonucleotide reductase subunit R1. We conclude that dominant-negative or gain-of-function mutations in RRM2B are a cause of multiple mtDNA deletions and adPEO.  相似文献   

19.
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE) is a severe human disease caused by mutations in TYMP, the gene encoding thymidine phosphorylase (TP). It belongs to a broader group of disorders characterized by a pronounced reduction in mitochondrial DNA (mtDNA) copy number in one or more tissues. In most cases, these disorders are caused by mutations in genes involved in deoxyribonucleoside triphosphate (dNTP) metabolism. It is generally accepted that imbalances in mitochondrial dNTP pools resulting from these mutations interfere with mtDNA replication. Nonetheless, the precise mechanistic details of this effect, in particular, how an excess of a given dNTP (e.g., imbalanced dTTP excess observed in TP deficiency) might lead to mtDNA depletion, remain largely unclear. Using an in organello replication experimental model with isolated murine liver mitochondria, we observed that overloads of dATP, dGTP, or dCTP did not reduce the mtDNA replication rate. In contrast, an excess of dTTP decreased mtDNA synthesis, but this effect was due to secondary dCTP depletion rather than to the dTTP excess in itself. This was confirmed in human cultured cells, demonstrating that our conclusions do not depend on the experimental model. Our results demonstrate that the mtDNA replication rate is unaffected by an excess of any of the 4 separate dNTPs and is limited by the availability of the dNTP present at the lowest concentration. Therefore, the availability of dNTP is the key factor that leads to mtDNA depletion rather than dNTP imbalances. These results provide the first test of the mechanism that accounts for mtDNA depletion in MNGIE and provide evidence that limited dNTP availability is the common cause of mtDNA depletion due to impaired anabolic or catabolic dNTP pathways. Thus, therapy approaches focusing on restoring the deficient substrates should be explored.  相似文献   

20.
The DNA polymerase gamma (Polg) is a nuclear-encoded enzyme involved in DNA replication in animal mitochondria. In humans, mutations in the POLG gene underlie a set of mitochondrial diseases characterized by mitochondrial DNA (mtDNA) depletion or deletion and multiorgan defects, named POLG disorders, for which an effective therapy is still needed. By applying antisense strategies, ENU- and CRISPR/Cas9-based mutagenesis, we have generated embryonic, larval-lethal and adult-viable zebrafish Polg models. Morphological and functional characterizations detected a set of phenotypes remarkably associated to POLG disorders, including cardiac, skeletal muscle, hepatic and gonadal defects, as well as mitochondrial dysfunctions and, notably, a perturbed mitochondria-to-nucleus retrograde signaling (CREB and Hypoxia pathways). Next, taking advantage of preliminary evidence on the candidate molecule Clofilium tosylate (CLO), we tested CLO toxicity and then its efficacy in our zebrafish lines. Interestingly, at well tolerated doses, the CLO drug could successfully rescue mtDNA and Complex I respiratory activity to normal levels, even in mutant phenotypes worsened by treatment with Ethidium Bromide. In addition, the CLO drug could efficiently restore cardio-skeletal parameters and mitochondrial mass back to normal values. Altogether, these evidences point to zebrafish as a valuable vertebrate organism to faithfully phenocopy multiple defects detected in POLG patients. Moreover, this model represents an excellent platform to screen, at the whole-animal level, candidate molecules with therapeutic effects in POLG disorders.Subject terms: Energy metabolism, Disease model, Experimental models of disease  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号