首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
It has been widely accepted that cAMP activates the protein kinase A (PKA) holoenzyme by dissociating the regulatory and catalytic subunits, thus freeing the catalytic subunit to phosphorylate its targets. However, recent experiments suggest that cAMP does not fully dissociate the holoenzyme. Here, we investigate this mechanism further by using small-angle X-ray scattering to study, at physiological enzyme concentrations, the type Ialpha and type IIbeta holoenzyme structures under equilibrium solution conditions without any labeling of the protein subunits. We observe that while the addition of a molar excess of cAMP to the type Ialpha PKA holoenzyme causes partial dissociation, it is only upon addition of a PKA peptide substrate together with cAMP that full dissociation occurs. Similarly, addition of excess cAMP to the type IIbeta holoenzyme causes only a partial dissociation. However, while the addition of peptide substrate as well as excess cAMP causes somewhat more dissociation, a significant percentage of intact type IIbeta holoenzyme remains. These results confirm that both the type Ialpha and the type IIbeta holoenzymes are more stable in the presence of cAMP than previously thought. They also demonstrate that substrate plays a differential role in the activation of type I versus type II holoenzymes, which could explain some important functional differences between PKA isoforms. On the basis of these data and other recently published data, we propose a structural model of type I holoenzyme activation by cAMP.  相似文献   

2.
We have recently identified two different pathways of CD95-mediated apoptosis (Scaffidi, C., Fulda, S., Srinivasan, A., Feng, L., Friesen, C., Tomaselli, K. J., Debatin, K.-M., Krammer, P. H., and Peter, M. E. (1998) EMBO J. 17, 1675-1687). CD95-mediated apoptosis in type I cells is initiated by large amounts of active caspase-8 formed at the death-inducing signaling complex (DISC) followed by direct cleavage of caspase-3. In contrast, in type II cells very little DISC and small amounts of active caspase-8 sufficient to induce the apoptogenic activity of mitochondria are formed causing a profound activation of both caspase-8 and caspase-3. Only in type II cells can apoptosis be blocked by overexpressed Bcl-2 or Bcl-x(L). We now show that a number of apoptosis-inhibiting or -inducing stimuli only affect apoptosis in type II cells, indicating that they act on the mitochondrial branch of the CD95 pathway. These stimuli include the activation of protein kinase C, which inhibits CD95-mediated apoptosis resulting in a delayed cleavage of BID, and the induction of apoptosis by the ceramide analog C(2)-ceramide. In addition, we have identified the CD95 high expressing cell line Boe(R) as a CD95 apoptosis-resistant type II cell that can be sensitized by treatment with cycloheximide without affecting formation of the DISC. This also places the effects of cycloheximide in the mitochondrial branch of the type II CD95 pathway. In contrast, c-FLIP was found to block CD95-mediated apoptosis in both type I and type II cells, because it acts directly at the DISC of both types of cells.  相似文献   

3.
Kim S  Ko J  Kim JH  Choi EC  Na DS 《FEBS letters》2001,489(2-3):243-248
Annexins (ANXs) are a family of proteins with calcium-dependent phospholipid binding properties. Although inhibition of phospholipase A2 (PLA2) by ANX-I has been reported, the mechanism is still controversial. Previously we proposed a 'specific interaction' model for the mechanism of cytosolic PLA2 (cPLA2) inhibition by ANX-I [Kim et al., FEBS Lett. 343 (1994) 251-255]. Here we have studied the cPLA2 inhibition mechanism using ANX-I, N-terminally deleted ANX-I (DeltaANX-I), ANX-II, ANX-II(2)P11(2), ANX-III, and ANX-V. Under the conditions for the specific interaction model, ANX-I, DeltaANX-I, and ANX-II(2)P11(2) inhibited cPLA2, whereas inhibition by ANX-II and ANX-III was negligible. Inhibition by ANX-V was much smaller than that by ANX-I. The protein-protein interactions between cPLA2 and ANX-I, DeltaANX-I, and ANX-II(2)P11(2) were verified by immunoprecipitation. We can therefore conclude that inhibition of cPLA2 by specific interaction is not a general function of all ANXs, and is rather a specific function of ANX-I. The results are consistent with the specific interaction model.  相似文献   

4.
I gamma CAT is a hybrid protein that inserts into the membrane of the endoplasmic reticulum as a type II membrane protein. These proteins span the membrane once and expose the NH2-terminal end on the cytoplasmic side and the COOH terminus on the exoplasmic side. I gamma CAT has a single hydrophobic segment of 30 amino acid residues that functions as a signal for membrane insertion and anchoring. The signal-anchor region in I gamma CAT was analyzed by deletion mutagenesis from its COOH-terminal end (delta C mutants). The results show that the 13 amino acid residues on the amino-terminal side of the hydrophobic segment are not sufficient for membrane insertion and translocation. Mutant proteins with at least 16 of the hydrophobic residues are inserted into the membrane, glycosylated, and partially proteolytically processed by a microsomal protease (signal peptidase). The degree of processing varies between different delta C mutants. Mutant proteins retaining 20 or more of the hydrophobic amino acid residues can span the membrane like the parent I gamma CAT protein and are not proteolytically processed. Our data suggest that in the type II membrane protein I gamma CAT, the signals for membrane insertion and anchoring are overlapping and that hydrophilic amino acid residues at the COOH-terminal end of the hydrophobic segment can influence cleavage by signal peptidase. From this and previous work, we conclude that the function of the signal-anchor sequence in I gamma CAT is determined by three segments: a positively charged NH2 terminus, a hydrophobic core of at least 16 amino acid residues, and the COOH-terminal flanking hydrophilic segment.  相似文献   

5.
W G Luttge  M E Rupp 《Steroids》1989,53(1-2):59-76
Adult female mice were adrenalectomized and ovariectomized and the concentration of Type I and Type II receptors in whole brain, kidney, and liver cytosol determined at various time thereafter by incubation with [3H]aldosterone (+ RU 26988 to prevent binding to Type II receptors) or [3H]dexamethasone, respectively. Type I receptor binding in brain was found to undergo a dramatic biphasic up-regulation, with levels six times that of intact levels by 24 h post-surgery and a doubling again by 4-8 days post-surgery. By 16 days, however, Type I specific binding had returned to intact levels. Similar, but less dramatic fluctuations were seen in kidney and liver, whereas much smaller fluctuations were seen for Type II receptors in all three tissues. In a follow-up study with Scatchard analyses we observed a similar transient up- and down-regulation in maximal binding for Type I, and to a lesser extent Type II receptors in all three tissues. As expected, the apparent binding affinity for both receptors increased after surgical removal of competing endogenous steroids. Radioimmunoassays revealed that plasma concentrations of corticosterone were reduced to near undetectable levels by 24 h post-surgery. A direct comparison of male and female mice revealed no sex-related differences in Type I receptor binding capacity fluctuations in brain cytosol after adrenalectomy-gonadectomy. Lastly, treatment with exogenous aldosterone or corticosterone was found to prevent adrenalectomy-gonadectomy-induced up-regulation of Type I and, to a lesser extent, Type II receptors in brain. Somewhat surprisingly, the potency of these two adrenocorticosteroids appeared to be very similar for both receptor types.  相似文献   

6.
1. In millimolar Ca2+, smooth muscle calpains I and II were inhibited by aluminum ion. 2. At sub-millimolar Ca2+, calpain II, but not calpain I, was activated by low millimolar aluminum ion. 3. Calpastatin inhibited aluminum ion-activated calpain II. 4. Aluminum ion-activated and Ca(2+)-activated calpain II gave almost identical patterns of desmin cleavage. 5. Aluminum-activated calpain II, unlike the Ca(2+)-activated enzyme, did not autolyze and retained its proteolytic activity over extended periods of time.  相似文献   

7.
The relative effects of treatment with an anticonvulsant, phenytoin, on the production of interferons were determined for both the murine and human systems. Phenytoin treatment was found to have differential effects on the in vitro production of Type I and Type II interferons. Phenytoin had either no effect (HuIFN-alpha) or an enhancing effect (MuIFN-alpha/beta) on the in vitro production of Type I interferons. In contrast, phenytoin pretreatment had an inhibitory effect on the in vitro production of Type II interferons (IFN-gamma) for both the murine and human systems. Phenytoin appeared to exert its inhibitory effect directly on the IFN-gamma-producing cell and was active even when added as late as 6 h after IFN-gamma induction. This inhibition was not related to a toxic effect of the phenytoin and occurred at phenytoin concentrations which were pharmacologically relevant (10-20 micrograms/ml). The effects of phenytoin on the in vivo production of MuIFN-gamma were also examined. In parallel to the in vitro observations, phenytoin treatment of mice significantly reduced the in vivo induction of MuIFN-gamma. The results raise the possibility that phenytoin therapy in humans may significantly affect the production of HuIFN-gamma.  相似文献   

8.
Hsp40 family members regulate Hsp70s ability to bind nonnative polypeptides and thereby play an essential role in cell physiology. Type I and type II Hsp40s, such as yeast Ydj1 and Sis1, form chaperone pairs with cytosolic Hsp70 Ssa1 that fold proteins with different efficiencies and carry out specific cellular functions. The mechanism by which Ydj1 and Sis1 specify Hsp70 functions is not clear. Ydj1 and Sis1 share a high degree of sequence identity in their amino and carboxyl terminal ends, but each contains a structurally unique and centrally located protein module that is implicated in chaperone function. To test whether the chaperone modules of Ydj1 and Sis1 function in the specification of Hsp70 action, we constructed a set of chimeric Hsp40s in which the chaperone domains of Ydj1 and Sis1 were swapped to form YSY and SYS. Purified SYS and YSY exhibited protein-folding activity and substrate specificity that mimicked that of Ydj1 and Sis1, respectively. In in vivo studies, YSY exhibited a gain of function and, unlike Ydj1, could complement the lethal phenotype of sis1 Delta and facilitate maintenance of the prion [RNQ+]. Ydj1 and Sis1 contain exchangeable chaperone modules that assist in specification of Hsp70 function.  相似文献   

9.
The anti-Lac B precursor cells from BALB/c (H-2)d mice which survive cytotoxic treatment with anti-Iak and complement will respond to Lac-KLH in culture but require more KLH helper T cells than unselected B cell populations or B cells surviving anti-Ig killing. These findings are not explainable by the classical Poisson assumption of a constant target of T-B ionteraction. We propose a T-B interaction theory with variable Ia target on the B cell surface. The theory quantitatively predicts the observed dose response relationships, and implies that Ia molecules on B cells are cell interaction structures.  相似文献   

10.
Both cinnamomin and ricin are type II ribosome-inactivating proteins. Cinnamomin is less cytotoxic compared with ricin. In order to clarify the mechanism of their different cytotoxicities, the interaction of cinnamomin and its A-chain with model membrane was investigated and compared with that of ricin and its A-chain. It was revealed that cinnamomin is less effective than ricin in interacting with model membrane. Cinnamomin A-chain interacts with model membrane much less violently than ricin A-chain. The differences in the interaction of cinnamomin, ricin or their A-chains with model membrane might at least in part indicate the different cytotoxicity between cinnamomin and ricin.  相似文献   

11.
We have identified membrane components which are adjacent to type I and type II signal-anchor proteins during their insertion into the membrane of the ER. Using two different cross-linking approaches a 37-38-kD nonglycosylated protein, previously identified as P37 (High, S., D. Gorlich, M. Wiedmann, T. A. Rapoport, and B. Dobberstein. 1991. J. Cell Biol. 113:35-44), was found adjacent to all the membrane inserted nascent chains used in this study. On the basis of immunoprecipitation, this ER protein was shown to be identical to the recently identified mammalian Sec61 protein. Thus, Sec61p is the principal cross-linking partner of both type I and type II signal-anchor proteins during their membrane insertion (this work), and of secretory proteins during their translocation (Gorlich, D., S. Prehn, E. Hartmann, K.-U. Kalies, and T. A. Rapoport. 1992. Cell. 71:489-503). We propose that membrane proteins of both orientations, and secretory proteins employ the same ER translocation sites, and that Sec61p is a core component of these sites.  相似文献   

12.
IL-1 signaling is mediated by the type I IL-1R (IL-1RI). The nonsignaling type II receptor has a regulatory function, since it reduces IL-1 effects by scavenging free IL-1 molecules. This regulatory function has been demonstrated only for the soluble form, released from the membrane receptor by action of specific proteases, but is still ill-defined for the membrane receptor itself. To assess the function of membrane IL-1RII, a modified IL-1RII cDNA was constructed, in which the cleavable domain was replaced with the corresponding uncleavable sequence of the epidermal growth factor receptor. The human keratinocyte line HaCaT, which does not express wild-type IL-1RII (wtIL-1RII), was stably transfected with this modified cDNA (unconventionally cleavable IL-1RII (uIL-1RII)). Cells transfected with uIL-1RII expressed the membrane form of IL-1RII, but were unable to produce the 60-kDa soluble receptor. Upon analysis of IL-1 responsiveness, parental HaCaT and vector-transfected cells (E27), expressing IL-1RI and the accessory chain IL-1R accessory protein, were responsive to IL-1. Conversely, cells overexpressing wtIL-1RII (811) or uIL-1RII (9D4) showed comparable reduction in responsiveness to both IL-1alpha (bound by membrane and soluble receptors) and IL-1beta (recognized by the membrane receptor only), suggesting that the membrane form of the IL-1RII is mainly responsible for IL-1 inhibition. In contrast with wtIL-1RII, uIL-1RII did not interact with IL-1R accessory protein. Thus, the membrane form of IL-1RII possesses strong IL-1-inhibitory activity, independent of sequestration of the accessory protein and circumscribed to its ligand sink function.  相似文献   

13.
Hicks KA  Hartman HL  Fierke CA 《Biochemistry》2005,44(46):15325-15333
Protein farnesyltransferase (FTase) and protein geranylgeranyltransferase type I (GGTase I) catalyze the attachment of a farnesyl or geranylgeranyl lipid, respectively, near the C-terminus of their protein substrates. FTase and GGTase I differ in both their substrate specificity and magnesium dependence, where the activity of FTase, but not GGTase I, is activated by magnesium. Many protein substrates of these enzymes contain an upstream polybasic region that is proposed to increase the affinity of the substrate and aid in plasma membrane association. Here, we demonstrate that the addition of an upstream polybasic region to a peptide substrate enhances the binding affinity of FTase approximately 4-fold for the peptide but diminishes the catalytic efficiency of the reaction, reflected by decreases in both the prenylation rate constant and kcat/KM. Specifically, the prenylation rate constant decreases 7-fold at 5 mM MgCl2 for the peptide KKKSKTKCVIM (C-terminal sequence of K-Ras4B) in comparison to TKCVIM. This decrease is accompanied by an alteration in the dependence on magnesium, as the K(Mg) increases from 2.2 +/- 0.1 mM for TKCVIM to 11.5 +/- 0.1 mM for KKKSKTKCVIM. The presence of an upstream polybasic region does not significantly affect GGTase I-catalyzed reactions, as only minimal changes are seen in Kd, kcat/KM, and k(chem) values. Thus, the presence of an upstream polybasic region enhances the dual prenylation of these substrates, by decreasing the catalytic efficiency of farnesylation catalyzed by FTase to a level comparable to that of geranylgeranylation catalyzed by GGTase I.  相似文献   

14.
Mechanical stimuli regulate cell function in much the same way as chemical signals do. This has been studied in various cell types, particularly those with defined mechanical roles. The alveolar type II cell (ATII) cell, which is part of the alveolar epithelium of the lung, is responsible for the synthesis and secretion of pulmonary surfactant. It is now widely believed that stretch of ATII cells, which occurs during breathing, is the predominant physiological trigger for surfactant release. To study this, investigators have used an increasingly sophisticated array of in vitro and in vivo models. Using various stretch devices and models of lung ventilation and expansion, it has been shown that stretch regulates multiple activities in ATII cells. In addition to surfactant secretion, stretch triggers the differentiation of ATII to alveolar type I cells, as well as ATII cell apoptosis. In doing so, stretch modulates the proportion of these cells in the lung epithelium during both development and maturation of the lung and following lung injury. From such studies, it appears that mechanical distortion plays an integral part in maintaining the overall structure and function of the lung.  相似文献   

15.
A three-day treatment with IFN-gamma enhanced up to 300% the capacity of human monocytes and macrophages to produce H2O2 during the respiratory burst. IFN-alpha or -beta (type I IFNs), which did not by themselves influence the burst, were found to antagonize the enhancing effect of IFN-gamma (type II IFN). The antagonism was concentration-dependent and required the presence of type I IFNs during the whole period of IFN-gamma pretreatment. These results suggest that the host defense function of mononuclear phagocytes may be controlled by the relative local concentrations of type I and type II IFNs.  相似文献   

16.
Studies on mitochondrial type I topoisomerase and on its function   总被引:4,自引:0,他引:4  
We have reported previously that rat liver mitochondria contain a topoisomerase and have shown it to be distinct from the nuclear enzyme by its sensitivity to Berenil and ethidium bromide. We report here some additional characterization. The enzyme differs further from its nuclear counterpart in its failure to bind to ssDNA cellulose and its chromatographic behavior on Sephadex; the latter procedure yields an Mr of 44 000 for the mitochondrial and 70 000 for the nuclear enzyme. The topoisomerase is strongly associated with mitochondrial membranes; only 10% of the activity could be extracted. The pH optimum of the enzyme falls between 6.0 and 8.5, with an NaCl optimum of 0.13 M in 0.1 M Tris (pH 8.3). Dithiothreitol is required, while N-ethylmaleimide is inhibitory. Tosylphenylalanine chloromethyl ketone, a serine proteinase inhibitor, abolishes activity; another, phenylmethanesulfonyl fluoride, has no effect. Berenil, a non-intercalating drug, and four of its analogues all inhibit with up to 100-fold differences in potency. No dependence on ATP, Mg2+, or both together could be shown. Neither novobiocin nor oxolinic acid shows any inhibitory effect. Nicked circles are generated in the presence of DMSO. These three observations are consistent with the topoisomerase being of the Type I class. Positively supercoiled pBR322 DNA, whose 6-8 positive turns were generated by altering solution conditions, is relaxed by the enzyme, indicating a lack of requirement for a negatively supercoiled substrate. We have also examined a partially purified preparation of the corresponding mitochondrial enzyme from mouse L cells. This enzyme is largely similar in properties to the rat liver enzyme. In isolated mitochondria, Berenil causes biphasic alterations in [3H]dATP incorporation into DNA, 10(-4) mM stimulating 2-fold, while higher concentrations inhibit. [3H]UTP incorporation into mitochondrial RNA also follows this pattern.  相似文献   

17.
Rats and mice retain a duplicated insulin (I) gene. Because the duplicated gene shares only incomplete homology with the ancestral insulin (II) gene it may be regulated differently. In the studies presented here we measured changes in abundance of these distinct insulin mRNAs and their precursors in response to fasting and fasting plus a single dose of cyproheptadine, two experimental manipulations that cause changes in the level of total insulin mRNA in rats. Both diminished rat insulin II mRNA to a greater extent than rat insulin I mRNA. Rat insulin II mRNA comprised 41% of the total insulin mRNA in 0 h controls and decreased to 33% of the total insulin mRNA after a 10-h fast. Insulin II mRNA decreased to 26% of the total insulin mRNA 10 h after treatment with cyproheptadine. To determine whether these manipulations had effects on insulin mRNA synthesis, precursors for each of the two mRNAs were quantified. Fasting for 24 h had only small effects on insulin I mRNA precursor, but diminished rat insulin II pre-mRNA to 32% of the 0 h control values. One and a half hours after fasting plus cyproheptadine administration, pre-mRNA for rat insulin II levels had decreased to 38%, while rat insulin I pre-mRNA remained at levels present in 0 h controls. Levels of rat insulin I and II pre-mRNAs were both maximally depressed at 10 h, but rat insulin II pre-mRNA decreased to 3%, while rat insulin I pre-mRNA diminished to only 49% of controls.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
An examination of the Arabidopsis thaliana genome sequence led to the identification of 29 predicted genes with the potential to encode members of the chaperonin family of chaperones (CPN60 and CCT), their associated cochaperonins, and the cytoplasmic chaperonin cofactor prefoldin. These comprise the first complete set of plant chaperonin protein sequences and indicate that the CPN family is more diverse than previously described. In addition to surprising sequence diversity within CPN subclasses, the genomic data also suggest the existence of previously undescribed family members, including a 10-kDa chloroplast cochaperonin. Consideration of the sequence data described in this review prompts questions about the complexities of plant CPN systems and the evolutionary relationships and functions of the component proteins, most of which have not been studied experimentally.  相似文献   

19.
Cholesterol is the most representative sterol present in vertebrate membranes and is the end product of the long and multistep sterol biosynthetic pathway. 7-Dehydrocholesterol (7-DHC) and desmosterol are the immediate biosynthetic precursors of cholesterol in the Kandutsch-Russell and Bloch pathway. In this article, we have monitored the effect of cholesterol and its two immediate biosynthetic precursors on biophysical and dynamic properties of fluid and gel phase membranes. Toward this goal, we have used fluorescent membrane probes, DPH and TMA-DPH, and the hydrophobic probe, pyrene. Our results using these probes show that although both 7-DHC and desmosterol differ with cholesterol in one double bond, they exhibit differential effects on membrane organization and dynamics. Importantly, we show that the effect of cholesterol and desmosterol on membrane organization and dynamics is similar in most cases, while 7-DHC has a considerably different effect. This demonstrates that the position of the double bond in sterols is an important determinant in maintaining membrane order and dynamics. These results assume relevance since the accumulation of cholesterol precursors have been reported to result in severe pathological conditions.  相似文献   

20.
Summary A difference was observed in the intracellular distribution between type I and II hexokinases in Ehrlich-Lettre hyperdiploid ascites tumor cells (ELD cells). Experiment of the rebinding to the mitochondria for either each or mixture of the partially purified preparations of the two types of hexokinase indicated that the accepting site on the mitochondrial membrane was common for both types. Mild treatment of the two isoenzymes with chymotrypsin resulted in loss of the binding ability to mitochondria without change in the catalytic activity. It was deduced from these results that the essential region in the two types of hexokinase to interact with mitochondria, which was cleaved by chymotrypsin, was the same or near-similar.Secondly, rebinding to and releasing from mitochondria were examined for the two hexokinase isoenzymes in the presence of various factors affecting the interaction between hexokinase and mitochondria, such as divalent cations, glucose 6-phosphate, and Pi. In the absence of divalent cations, about a half of the type I isoenzyme was bound to mitochondria, whereas almost no type II was bound. A difference was also seen between the two types in the concentration of divalent cations required for the saturation of the binding. A more marked difference was observed in the effect of Pi either alone or in combination with glucose 6-phosphate on the activity and binding ability of the two hexokinases. For type I isoenzyme, Pi relieved both inhibitory and releasing effects of glucose 6-phosphate. On the contrary, for type II, Pi had no such a modulating effect on the releasing action of glucose 6-phosphate, and had the inhibitory effect for itself on the enzyme activity.From these results, it is likely that the difference in the intracellular distribution between type I and II hexokinases in ELD cells is due to the difference in their catalytic regions in the reaction with these ligands, which would induce the structural change in the region responsible for the binding to mitochondria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号