首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the cutaneous and resting skeletal muscle vascular responses to prolonged exercise, total forearm blood flow (FBF-plethysmography) (5 men) and forearm muscle blood flow (MBF-[125I]antipyrine clearance) (4 men) were measured throughout 55-60 min of bicycle exercise (600-750 kpm/min). Heart rate (HR) and esophageal temperature (Tes) were also measured throughout exercise. FBF showed only small changes during the first 10 min followed by progressive increments during the 10-40 min interval and smaller rises thereafter. For the full 60 min of exercise, there was an average increase in FBF of 8.26 ml/100 ml-min. MBF showed an initial fall with the onset of exercise (on the average from 3.84 to 2.13 ml/100 ml-min) which was sustained or fell further as exercise continued, indicating that increments in FBF were confined to skin. Much of the increase in FBF occurred despite essentially constant Tes. Results suggest that the progressive decrements in central venous pressure, stroke volume, and arterial pressure previously seen during prolonged exercise are due in part to progressive increments in cutaneous blood flow and volume.  相似文献   

2.
To examine whether central command contributes differently to the cardiovascular responses during voluntary static exercise engaged by different muscle groups, we encouraged healthy subjects to perform voluntary and electrically evoked involuntary static exercise of ankle dorsal and plantar flexion. Each exercise was conducted with 25% of the maximum voluntary force of the right ankle dorsal and plantar flexion, respectively, for 2 min. Heart rate (HR) and mean arterial blood pressure (MAP) were recorded, and stroke volume, cardiac output (CO), and total peripheral resistance were calculated. With voluntary exercise, HR, MAP, and CO significantly increased during dorsal flexion (the maximum increase, HR: 12 ± 2.3 beats/min; MAP: 14 ± 2.0 mmHg; CO: 1 ± 0.2 l/min), whereas only MAP increased during plantar flexion (the maximum increase, 6 ± 2.0 mmHg). Stroke volume and total peripheral resistance were unchanged throughout the two kinds of voluntary static exercise. With involuntary exercise, there were no significant changes in all cardiovascular variables, irrespective of dorsal or plantar flexion. Furthermore, before the force onset of voluntary static exercise, HR and MAP started to increase without muscle contraction, whereas they had no significant changes with involuntary exercise at the moment. The present findings indicate that differential contribution of central command is responsible for the different cardiovascular responses to static exercise, depending on the strength of central control of the contracting muscle.  相似文献   

3.
Previous studies have suggested that increases in skin blood flow (SkBF) are the primary physiological mechanism responsible for cardiovascular drift during exercise in the heat. Most of these studies, however, used exercise bouts of 60 min in duration or less. The purpose of this study was to explore the possibility that during prolonged (> 60 min) exercise in the heat, cardiovascular drift can occur without a concomitant increase in SkBF. The subjects were five heat-acclimated female volunteers. Each subject completed a 6-h heat exposure (38oC, 62% RH). Heart rate (HR), stroke volume (SV), and two independent measures of SkBF were obtained each hour. Cardiovascular drift occurred, as evidenced by a significant (p<0.05) 19% increase in HR and a significant 21% decrease in SV. Interestingly, however, SkBF plateaued by hour 2 and showed no further increase. Such results suggest that during prolonged exercise in the heat, when SkBF has reached very high values (>20 ml / 100 ml per min) and plateaued, cardiovascular drift can still occur.  相似文献   

4.
Regulation of subcutaneous adipose tissue blood flow (ATBF) remains poorly elucidated in humans, especially during exercise. In the present study we tested the role of adenosine in the regulation of ATBF adjacent to active and inactive thigh muscles during intermittent isometric knee-extension exercise (1 s contraction followed by 2 s rest with workloads of 50, 100, and 150 N) in six healthy young women. ATBF was measured using positron emission tomography (PET) without and with unspecific adenosine receptor inhibitor theophylline infused intravenously. Adipose regions were localized from fused PET and magnetic resonance images. Blood flow in subcutaneous adipose tissue adjacent to active muscle increased from rest (1.0 ± 0.3 ml·100 g(-1)·min(-1)) to exercise (P < 0.001) and along with increasing exercise intensity (50 N = 4.1 ± 1.4, 100 N = 5.4 ± 1.8, and 150 N = 6.9 ± 3.0 ml·100 g(-1)·min(-1), P = 0.03 for the increase). In contrast, ATBF adjacent to inactive muscle remained at resting levels with all intensities (~1.0 ± 0.5 ml·100 g(-1)·min(-1)). During exercise theophylline prevented the increase in ATBF adjacent to active muscle especially during the highest exercise intensity (50 N = 4.3 ± 1.8 ml·100 g(-1)·min(-1), 100 N = 4.0 ± 1.5 ml·100 g(-1)·min(-1), and 150 N = 4.9 ± 1.8 ml·100 g(-1)·min(-1), P = 0.06 for an overall effect) but had no effect on blood flow adjacent to inactive muscle or adipose blood flow in resting contralateral leg. In conclusion, we report in the present study that 1) blood flow in subcutaneous adipose tissue of the leg is increased from rest to exercise in an exercise intensity-dependent manner, but only in the vicinity of working muscle, and 2) adenosine receptor antagonism attenuates this blood flow enhancement at the highest exercise intensities.  相似文献   

5.
Our aim was to test the hypothesis that apnea-induced hemodynamic responses during dynamic exercise in humans differ between those who show strong bradycardia and those who show only mild bradycardia. After apnea-induced changes in heart rate (HR) were evaluated during dynamic exercise, 23 healthy subjects were selected and divided into a large response group (L group; n = 11) and a small response group (S group; n = 12). While subjects performed a two-legged dynamic knee extension exercise at a work load that increased HR by 30 beats/min, apnea-induced changes in HR, cardiac output (CO), mean arterial pressure (MAP), arterial O(2) saturation (Sa(O(2))), forearm blood flow (FBF), and leg blood flow (LBF) were measured. During apnea, HR in the L group (54 ± 2 beats/min) was lower than in the S group (92 ± 3 beats/min, P < 0.05). CO, Sa(O(2)), FBF, LBF, forearm vascular conductance (FVC), leg vascular conductance (LVC), and total vascular conductance (TVC) were all reduced, and MAP was increased in both groups, although the changes in CO, TVC, LBF, LVC, and MAP were larger in the L group than in the S group (P < 0.05). Moreover, there were significant positive linear relationships between the reduction in HR and the reductions in TVC, LVC, and FVC. We conclude that individuals who show greater apnea-induced bradycardia during exercise also show greater vasoconstriction in both active and inactive muscle regions.  相似文献   

6.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

7.
The purpose of this study was to test the hypothesis that efferent sympathetic neural discharge is coupled with the development of muscle fatigue during voluntary exercise in humans. In 12 healthy subjects (aged 20-34 yr) we measured heart rate (HR), arterial blood pressure (AP), and noncontracting, skeletal muscle sympathetic nerve activity (MSNA) in the leg (peroneal nerve) before (control) and during each of three trials of submaximal (30% of maximum) isometric handgrip exercise performed to exhaustion. In six of the subjects of eletromyographic (EMG) activity of the exercising forearm was also measured. HR and AP increased significantly (P less than 0.05) in the 1st min of exercise in all trials. In contrast, neither MSNA nor EMG activity increased significantly above control during the 1st min of exercise, but both parameters subsequently increased in a progressive and parallel manner (P less than 0.05). The overall correlation coefficient between MSNA and EMG activity (144 observations) was 0.85 (P less than 0.001). With successive trials the magnitudes of the increases in HR, AP, MSNA, and EMG activity were greater at any absolute point in time during exercise. These results indicate that sympathetic activation to noncontracting skeletal muscle is directly related to the development of muscle fatigue (as assessed by the change in EMG) during prolonged isometric exercise in humans. Furthermore, our findings demonstrate that previous fatiguing contractions alter the time course of the sympathetic neural adjustments to exercise.  相似文献   

8.
Insulin infusion causes muscle vasodilation, despite the increase in sympathetic nerve activity. In contrast, a single bout of exercise decreases sympathetic activity and increases muscle blood flow during the postexercise period. We tested the hypothesis that muscle sympathetic activity would be lower and muscle vasodilation would be higher during hyperinsulinemia performed after a single bout of dynamic exercise. Twenty-one healthy young men randomly underwent two hyperinsulinemic euglycemic clamps performed after 45 min of seated rest (control) or bicycle exercise (50% of peak oxygen uptake). Muscle sympathetic nerve activity (MSNA, microneurography), forearm blood flow (FBF, plethysmography), blood pressure (BP, oscillometric method), and heart rate (HR, ECG) were measured at baseline (90 min after exercise or seated rest) and during hyperinsulinemic euglycemic clamps. Baseline glucose and insulin concentrations were similar in the exercise and control sessions. Insulin sensitivity was unchanged by previous exercise. During the clamp, insulin levels increased similarly in both sessions. As expected, insulin infusion increased MSNA, FBF, BP, and HR in both sessions (23 +/- 1 vs. 36 +/- 2 bursts/min, 1.8 +/- 0.1 vs. 2.2 +/- 0.2 ml.min(-1).100 ml(-1), 89 +/- 2 vs. 92 +/- 2 mmHg, and 58 +/- 1 vs. 62 +/- 1 beats/min, respectively, P < 0.05). BP and HR were similar between sessions. However, MSNA was significantly lower (27 +/- 2 vs. 31 +/- 2 bursts/min), and FBF was significantly higher (2.2 +/- 0.2 vs. 1.8 +/- 0.1 ml.min(-1).100 ml(-1), P < 0.05) in the exercise session compared with the control session. In conclusion, in healthy men, a prolonged bout of dynamic exercise decreases MSNA and increases FBF. These effects persist during acute hyperinsulinemia performed after exercise.  相似文献   

9.
This study investigated the cardiovascular and metabolic responses to prolonged wheelchair exercise in a group of highly trained, traumatic paraplegic men. Six endurance-trained subjects with spinal cord lesions from T10 to T12/L3 underwent a maximal incremental exercise test in which they propelled their own track wheelchairs on a motor-driven treadmill to exhaustion to determine maximal O2 uptake (VO2max) and related variables. One week later each subject exercised in the same wheelchair on a motorized treadmill at 60-65% of VO2max for 80 min in a thermoneutral environment (dry bulb 22 degrees C, wet bulb 17 degrees C). Approximately 10 ml of venous blood were withdrawn both 20 min and immediately before exercise (0 min), after 40 and 80 min of exercise, and 20 min postexercise. Venous blood was analyzed for hematocrit (Hct), hemoglobin (Hb), and lactate, and the separated plasma was analyzed for glucose, K+, Na+, Cl-, free fatty acid (FFA), and osmolality. VO2, CO2 production (VCO2), minute ventilation (VE), respiratory exchange ratio (R), net efficiency, and wheelchair strike rate were determined at four intervals throughout the exercise period. Data were analyzed with an analysis of variance repeated-measures design and a Scheffé post hoc test. VO2max was 47.5 +/- 1.8 (SE) ml.min-1.kg-1 with maximal VE BTPS and maximal heart rate (HR) being 100.1 +/- 3.8 l/min and 190 +/- 1 beats/min, respectively. During prolonged exercise there were no significant changes in VO2, VCO2, VE, R, net efficiency, wheelchair strike rate, and lactate, glucose, and Na+ concentrations. Significant increases occurred in HR, FFA, K+, Cl-, osmolality, Hb, and Hct throughout exercise.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Changes in body temperature, oxygen uptake (VO2), heart rate (HR), sweating rate and plasma osmolarity were examined in 10 human subjects, performing four successive 30 min exercise-bouts of the same intensity (50% VO2 max) separated by 30 min rest periods. In spite of the rest intervals and replacement of body fluid loss there was a progressive increase in VO2. HR, rectal (Tre) and mean body (Tb) temperatures in consecutive exercise bouts. The thermoregulatory efficiency showed an increasing tendency, and a delay in the sweating response at the beginning of each exercise was shortened. It is concluded that a drift in metabolic and temperature responses to exercise, reported throughout a long-term continuous work, occurs also in the euhydrated subjects performing a prolonged intermittent exercise. It is not caused by an impaired thermoregulation during exercise but rather by insufficient restitution of metabolic processes during rest intervals.  相似文献   

11.
Reduced skeletal muscle mitochondrial density is proposed to lead to impaired muscle lipid oxidation and increased lipid accumulation in sedentary individuals. We assessed exercise-stimulated lipid oxidation by imposing a prolonged moderate-intensity exercise in men with variable skeletal muscle mitochondrial density as measured by citrate synthase (CS) activity. After a 2-day isoenergetic high-fat diet, lipid oxidation was measured before and during exercise (650 kcal at 50% VO(2)max) in 20 healthy men with either high (HI-CS = 24 ± 1; mean ± s.e.) or low (LO-CS = 17 ± 1 nmol/min/mg protein) muscle CS activity. Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Respiratory exchange data and blood samples were collected at rest and throughout the exercise. HI-CS subjects had higher VO(2)max (50 ± 1 vs. 44 ± 2 ml/kg fat free mass/min; P = 0.01), lower fasting respiratory quotient (RQ) (0.81 ± 0.01 vs. 0.85 ± 0.01; P = 0.04) and higher ex vivo muscle palmitate oxidation (866 ± 168 vs. 482 ± 78 nmol/h/mg muscle; P = 0.05) compared to LO-CS individuals. However, whole-body exercise-stimulated lipid oxidation (20 ± 2 g vs. 19 ± 1 g; P = 0.65) and plasma glucose, lactate, insulin, and catecholamine responses were similar between the two groups. In conclusion, in response to the same energy demand during a moderate prolonged exercise bout, reliance on lipid oxidation was similar in individuals with high and low skeletal muscle mitochondrial density. This data suggests that decreased muscle mitochondrial density may not necessarily impair reliance on lipid oxidation over the course of the day since it was normal under a high-lipid oxidative demand condition. Twenty-four-hour lipid oxidation and its relationship with mitochondrial density need to be assessed.  相似文献   

12.
Sex differences in sympathetic neural control during static exercise in humans are few and the findings are inconsistent. We hypothesized women would have an attenuated vasomotor sympathetic response to static exercise, which would be further reduced during the high sex hormone [midluteal (ML)] vs. the low hormone phase [early follicular (EF)]. We measured heart rate (HR), blood pressure (BP), and muscle sympathetic nerve activity (MSNA) in 11 women and 10 men during a cold pressor test (CPT) and static handgrip to fatigue with 2 min of postexercise circulatory arrest (PECA). HR increased during handgrip, reached its peak at fatigue, and was comparable between sexes. BP increased during handgrip and PECA where men had larger increases from baseline. Mean ± SD MSNA burst frequency (BF) during handgrip and PECA was lower in women (EF, P < 0.05), as was ΔMSNA-BF smaller (main effect, both P < 0.01). ΔTotal activity was higher in men at fatigue (EF: 632 ± 418 vs. ML: 598 ± 342 vs. men: 1,025 ± 416 a.u./min, P < 0.001 for EF and ML vs. men) and during PECA (EF: 354 ± 321 vs. ML: 341 ± 199 vs. men: 599 ± 327 a.u./min, P < 0.05 for EF and ML vs. men). During CPT, HR and MSNA responses were similar between sexes and hormone phases, confirming that central integration and the sympathetic efferent pathway was comparable between the sexes and across hormone phases. Women demonstrated a blunted metaboreflex, unaffected by sex hormones, which may be due to differences in muscle mass or fiber type and, therefore, metabolic stimulation of group IV afferents.  相似文献   

13.
In heart failure (HF), there is a reduced baroreflex sensitivity at rest, and during dynamic exercise there is enhanced muscle metaboreflex activation (MRA). However, how the arterial baroreflex modulates HR during exercise is unknown. We tested the hypothesis that spontaneous baroreflex sensitivity (SBRS) is attenuated during exercise in HF and that MRA further depresses SBRS. In seven conscious dogs we measured heart rate (HR), cardiac output, and left ventricular systolic pressure at rest and during mild and moderate dynamic exercise, before and during MRA (via imposed reductions of hindlimb blood flow), and before and after induction of HF (by rapid ventricular pacing). SBRS was assessed by the sequences method. In control, SBRS was reduced from rest with a progressive resetting of the baroreflex stimulus-response relationship in proportion to exercise intensity and magnitude of MRA. In HF, SBRS was significantly depressed in all settings; however, the changes with exercise and MRA occurred with a pattern similar to the control state. As in control, the baroreflex stimulus-response relationship showed an intensity- and muscle metaboreflex (MMR)-dependent rightward and upward shift. The results of this study indicate that HF induces an impairment in baroreflex control of HR at rest and during exercise, although the effects of exercise and MRA on SBRS occur with a similar pattern as in control, indicating the persistence of some vagal activity.  相似文献   

14.
Cardiovascular drift (CVD) can be defined as a progressive increase in heart rate (HR), decreases in stroke volume (SV) and mean arterial pressure (MAP), and a maintained cardiac output (Q) during prolonged exercise. To test the hypothesis that the magnitude of CVD would be related to changes in skin blood flow ( SkBF ), eight healthy, moderately trained males performed 70-min bouts of cycle ergometry in a 2 X 2 assortment of airflows (less than 0.2 and 4.3 m X s-1) and relative work loads (43.4% and 62.2% maximal O2 uptake). Ambient temperature and relative humidity were controlled to mean values of 24.2 +/- 0.8 degrees C and 39.5 +/- 2.4%, respectively. Q, HR, MAP, SkBF , skin and rectal temperatures, and pulmonary gas exchange were measured at 10-min intervals during exercise. Between the 10th and 70th min during exercise at the higher work load with negligible airflow, HR and SkBF increased by 21.6 beats X min-1 and 14.0 ml X 100 ml-1 X min-1, respectively, while SV and MAP decreased by 16.4 ml and 11.3 mmHg. The same work load in the presence of 4.3 m X s-1 airflow resulted in nonsignificant changes of 7.6 beats X min-1, 4.0 ml X (100 ml-1 X min)-1, -2.7 ml, and -1.7 mmHg for HR, SkBF , SV, and MAP. Since nonsignificant changes in HR, SkBF , SV, and MAP were observed at the lower work load in both airflow conditions, the results emphasize that CVD occurs only in conditions which combine high metabolic and thermal circulatory demands.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
By a combination of iontophoresis of I-epinephrine into the skin of one arm and simultaneous venous occlusion plethysmography in both treated (muscle only) and untreated forearms (muscle plus skin), we examined in 16 normal volunteers forearm blood flow, capillary filtration coefficient and venous capacity at cuff pressure of 40 mm of mercury (VC40) at rest, during tonic finger exercise and after interrupted repetitive finger exercise. Blood pressure did not change during the testing procedure. Forearm muscle conductance was about 60% to 70% of total conductance and was positively correlated with total conductance during rest and exercise. With standard exercises muscle conductance rises to 1½ to 2½ times resting level, and skin conductance rises to 2½ to 4½ times resting level. The capillary filtration coefficient is almost entirely in the muscle. It doubles in value with tonic exercise but decreases to half its resting value after interrupted repetitive exercise despite greatly increased conductance. Therefore, repetitive exercise-induced dissociation between conductance and filtration surface occurs in striated muscle. The mechanism is yet unknown. VC40 in muscle is about 84% of total forearm VC40. During tonic exercise muscle VC40 was reduced, and during interrupted repetitive exercise the values for muscle and skin returned to resting values. A high correlation between muscle only and muscle-plus-skin for forearm blood flow and the identify between arms for measuring capillary filtration coefficient makes iontophoresis unnecessary for determining these values in forearm striated muscle under these experimental conditions.  相似文献   

16.
The aim of this study was to assess the relationship between power output, lactate, skin temperature, and quadriceps muscle activity during brief repeated exercise with increasing intensity. Eighteen regional level soccer players (age 24.5 ± 3.8 years) were selected after a test of maximal exercise capacity to participate in 2 force velocity (Fv) exercise tests separated by 3 days. The tests were done to examine the reliability of variables measured in the selected subjects during this type of task. During each Fv exercise test, data on power output, heart rate (HR), skin temperature, blood lactate accumulation, the root mean square (RMS), and the mean power frequency (MPF) of the surface electromyography of the superficial quadriceps muscle were collected. Results showed a significant correlation between power output and HR, skin temperature, blood lactate accumulation, and RMS. However, no association was observed with MPF that informs on the level of fatigue and power output. Thus, the result of this study may suggest that the Fv exercise test is not a fatigability test.  相似文献   

17.
Plateau in muscle blood flow during prolonged exercise in miniature swine   总被引:1,自引:0,他引:1  
Cardiovascular, metabolic, and thermoregulatory responses were studied in eight male miniature swine during a prolonged treadmill run. Each animal underwent 8-10 wk of exercise training, thoracic surgery, and 3 wk of retraining before the experimental run. This regimen enabled the animals to run at 65% of the heart rate range (210-220 beats/min) for approximately 100 min. Skin wetting and a fan were used to cool the pigs during the run. Regional blood flow was significantly altered with the onset of exercise; however, hindlimb muscle and total gastrointestinal blood flow were unchanged throughout the exercise period. Compared with 5-min values, heart rate and cardiac output were significantly elevated by 17 beats/min and 31 ml.min-1.kg-1 at 60 min and by 20 beats/min and 33 ml.min-1.kg-1 at end exercise, respectively. Core temperatures increased between 5 and 30 min of exercise (39.4 vs. 39.9 degrees C) but then remained unchanged to the end of exercise. Mean arterial pressure, O2 consumption, and blood lactate did not change during the exercise bout. These data indicate that limiting increases in core temperature during prolonged exercise was associated with a plateau in active muscle blood flow.  相似文献   

18.
To investigate the effects of different training methods on nonthermal sweating during activation of the muscle metaboreflex, we compared sweating responses during postexercise muscle occlusion in endurance runners, sprinters, and untrained men under mild hyperthermia (ambient temperature, 35°C; relative humidity, 50%). Ten endurance runners, nine sprinters, and ten untrained men (maximal oxygen uptakes: 57.5 ± 1.5, 49.3 ± 1.5, and 36.6 ± 1.6 ml·kg(-1)·min(-1), respectively; P < 0.05) performed an isometric handgrip exercise at 40% maximal voluntary contraction for 2 min, and then a pressure of 280 mmHg was applied to the forearm to occlude blood circulation for 2 min. The Δ change in mean arterial blood pressure between the resting level and the occlusion was significantly higher in sprinters than in untrained men (32.2 ± 4.4 vs. 17.3 ± 2.6 mmHg, respectively; P < 0.05); however, no difference was observed between distance runners and untrained men. The Δ mean sweating rate (averaged value of the forehead, chest, forearm, and thigh) during the occlusion was significantly higher in distance runners than in sprinters and untrained men (0.38 ± 0.07, 0.19 ± 0.03, and 0.11 ± 0.04 mg·cm(-2)·min(-1), respectively; P < 0.05) and did not differ between sprinters and untrained men. Our results suggest that the specificity of training modalities influences the sweating response during activation of the muscle metaboreflex. In addition, these results imply that a greater activation of the muscle metaboreflex does not cause a greater sweating response in sprinters.  相似文献   

19.
This study determined whether the decline in stroke volume (SV) during prolonged exercise is related to an increase in heart rate (HR) and/or an increase in cutaneous blood flow (CBF). Seven active men cycled for 60 min at approximately 57% peak O2 uptake in a neutral environment (i.e., 27 degrees C, <40% relative humidity). They received a placebo control (CON) or a small oral dose (i.e., approximately 7 mg) of the beta1-adrenoceptor blocker atenolol (BB) at the onset of exercise. At 15 min, HR and SV were similar during CON and BB. From 15 to 55 min during CON, a 13% decline in SV was associated with an 11% increase in HR and not with an increase in CBF. CBF increased mainly from 5 to 15 min and remained stable from 20 to 60 min of exercise in both treatments. However, from 15 to 55 min during BB, when the increase in HR was prevented by atenolol, the decline in SV was also prevented, despite a normal CBF response (i.e., similar to CON). Cardiac output was similar in both treatments and stable throughout the exercise bouts. We conclude that during prolonged exercise in a neutral environment the decline in SV is related to the increase in HR and is not affected by CBF.  相似文献   

20.
Uncoupling protein-3 (UCP3) expression has been shown to increase dramatically in response to muscular contraction, but the physiological significance of UCP3 upregulation is still elusive. In this study, UCP3 mRNA and protein expression were investigated along with mitochondrial respiratory function, reactive oxygen species (ROS) generation, and antioxidant defense in rat skeletal muscle during and after an acute bout of prolonged exercise. UCP3 mRNA expression was elevated sharply at 45 min of exercise, reaching 7- to 8-fold above resting level at 150 min. The increase in UCP3 protein content showed a latent response but was elevated approximately 1.9-fold at 120 min of exercise. Both UCP3 mRNA and UCP3 protein gradually returned to resting levels 24 h postexercise. Mitochondrial ROS production was progressively increased during exercise. However, ROS showed a dramatic drop at 150 min although their levels remained severalfold higher during the recovery. Mitochondrial State 4 respiration rate was increased by 46 and 58% (p < 0.05) at 90 and 120 min, respectively, but returned to resting rate at 150 min, when State 3 respiration and respiratory control index (RCI) were suppressed. ADP-to-oxygen consumption (P/O) ratio and ATP synthase activity were lowered at 3 h postexercise, whereas proton motive force and mitochondrial malondialdehyde content were unchanged. Manganese superoxide dismutase gene expression was not affected by exercise except for an increase in mRNA abundance at 3 h postexercise. These data demonstrate that UCP3 expression in rat skeletal muscle can be rapidly upregulated during prolonged exercise, possibly owing to increased ROS generation. Increased UCP3 may partially alleviate the proton gradient across the inner membrane, thereby reducing further ROS production by the electron transport chain. However, prolonged exercise caused a decrease in energy coupling efficiency in muscle mitochondria revealed by an increased respiration rate due to proton leak (State 4/State 3 ratio) and decreased RCI. We thus propose that the compromise of the oxidative phosphorylation efficiency due to UCP3 upregulation may serve an antioxidant function to protect the muscle mitochondria from exercise-induced oxidative stress  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号