首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Failure to maintain mitochondrial integrity is linked to age‐related conditions, such as neurodegeneration. Two genes linked to Parkinson's disease, PINK1 and Parkin, play a key role in targeting the degradation of dysfunctional mitochondria (mitophagy). However, the mechanisms regulating the PINK1/Parkin pathway and other processes that impinge on mitochondrial turnover are poorly understood. Two articles in EMBO reports, by the Przedborski and Ganley groups 1 2 , shed light on a new role for processed, cytoplasmic PINK1, and show that depletion of cellular iron levels stimulates PINK1/Parkin‐independent mitophagy.  相似文献   

3.
4.
5.
The many faces of PPARgamma   总被引:34,自引:0,他引:34  
Lehrke M  Lazar MA 《Cell》2005,123(6):993-999
  相似文献   

6.
The many faces of c-MYC   总被引:24,自引:0,他引:24  
The proto-oncogene c-MYC is implicated in various physiological processes-cell growth, proliferation, loss of differentiation, and cell death (apoptosis). Oncogenic c-MYC implies constitutive or deregulated expression of c-MYC and is associated with many human cancers often with poor prognosis. Recently, c-MYC has been implicated in the loss and dysfunction of insulin-producing beta cells in diabetes. Intriguingly, this raises the possibility that c-Myc may be a key contributor to disease, not only by deregulating cell proliferation, which is well established, but also by virtue of its opposing role in engendering apoptosis. However, given the fact that human diseases at diagnosis are generally advanced and pathologically complex, it is generally difficult to attribute a specific pathogenic role to c-MYC, or indeed any given single factor, or to assess the potential of therapies targeting individual such factors. Regulatable transgenic mouse models have shed light on these issues, have influenced our thinking about cancer, and have provided encouragement for the future development of cancer therapies based on targeting individual oncogenes such as c-MYC. Although still in its infancy, encouraging results have been reported for several approaches using gene targeting to interfere with c-MYC expression or activity both in vitro and in vivo.  相似文献   

7.
8.
S Arshinoff 《CMAJ》1997,157(11):1516-1517
  相似文献   

9.
10.
The many faces of RNAi   总被引:2,自引:0,他引:2  
Small non-coding RNAs, through association with Argonaute protein family members, have a variety of functions during the development of an organism. Although there is increased mechanistic understanding of the RNA interference (RNAi) pathways surrounding these small RNAs, how their effects are modulated by subcellular compartmentalization and cross-pathway functional interactions is only beginning to be explored. This review examines the current understanding of these aspects of RNAi pathways and the biological functions of these pathways.  相似文献   

11.
Wayne Kondro 《CMAJ》2010,182(13):E649-E650
  相似文献   

12.
The many faces of sequence alignment   总被引:9,自引:0,他引:9  
Starting with the sequencing of the mouse genome in 2002, we have entered a period where the main focus of genomics will be to compare multiple genomes in order to learn about human biology and evolution at the DNA level. Alignment methods are the main computational component of this endeavour. This short review aims to summarise the current status of research in alignments, emphasising large-scale genomic comparisons and suggesting possible directions that will be explored in the near future.  相似文献   

13.
14.
15.
R. G. Green 《CMAJ》1972,106(6):636-passim
  相似文献   

16.
Mayor SJ  Schaefer JA 《Oecologia》2005,145(2):275-280
Population density, one of the most fundamental demographic attributes, may vary systematically with spatial scale, but this scale-sensitivity is incompletely understood. We used a novel approach—based on fully censused and mapped distributions of eastern grey squirrel (Sciurus carolinensis) dreys, beaver (Castor canadensis) lodges, and moose (Alces alces)—to explore the scale-dependence of population density and its relationship to landscape features. We identified population units at several scales, both objectively, using cluster analysis, and arbitrarily, using artificial bounds centred on high-abundance sites. Densities declined with census area. For dreys, this relationship was stronger in objective versus arbitrary population units. Drey density was inconsistently related to patch area, a relationship that was positive for all patches but negative when non-occupied patches were excluded. Drey density was negatively related to the proportion of green-space and positively related to the density of buildings or roads, relationships that were accentuated at coarser scales. Mean drey densities were more sensitive to scale when calculated as organism-weighted versus area-weighted averages. Greater understanding of these scaling effects is required to facilitate comparisons of population density across studies.  相似文献   

17.
18.
19.
《CMAJ》1971,105(11):1127
  相似文献   

20.
Biological individuality is a major topic of discussion in biology and philosophy of biology. Recently, several objections have been raised against traditional accounts of biological individuality, including the objections of monism (the tendency to focus on a single individuality criterion and/or a single biological field), theory-centrism (the tendency to discuss only theory-based individuation), ahistoricity (the tendency to neglect what biologists of the past and historians of biology have said about biological individuality), disciplinary isolationism (the tendency to isolate biological individuality from other scientific and philosophical domains that have investigated individuality), and the multiplication of conceptual uncertainties (the lack of a precise definition of “biological individual” and related terms). In this introduction, I will examine the current philosophical landscape about biological individuality, and show how the contributions gathered in this special issue address these five objections. Overall, the aim of this issue is to offer a more diverse, unifying, and scientifically informed conception of what a biological individual is.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号