首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isothiocyanates (ITCs) are the main sulfur-containing metabolites found in cruciferous vegetables. There is evidence that some ITCs may act as chemopreventive agents against different tumor types and induce apoptosis and modulate cell-cycle progression of highly proliferative cancer cells. However, there are also studies reporting genotoxic or co-carcinogenic effects for some ITCs, such as benzyl ITC and phenyl ITC. Since selectivity for transformed cells and absence of genotoxicity for healthy cells are important pre-requisites for new chemopreventive agents, we investigated micronucleus formation and induction of apoptosis by 4-(methylthio)butylisothiocyanate (MTBITC), sulforaphane and a mixture of ITCs in human T-lymphocyte cultures. We demonstrate that MTBITC, sulforaphane and the mixture of ITCs did not induce micronuclei. Moreover, sulforaphane induced a dose-dependent increase in the number of apoptotic cells, which was significant at the highest concentration tested (30 microM) (41% versus 18% in the untreated samples, P<0.05). The mixture of ITCs presented a trend similar to that found for sulforaphane. In fact, the mixture of ITCs was able to induce a dose-dependent increase in the percentage of apoptotic cells, which reached a maximum value at the concentration of 13 microg/ml (46% versus 19% in control samples, P<0.05). Induction of apoptosis was not observed in cultures treated with MTBITC. Our results suggest that different ITCs can have different effects. Moreover, although the mixture of glucosinolates (GLs) used in the present study does not reflect the exact composition of broccoli, our findings demonstrate that the quantitative effects of a single, specific ITC can be significantly different from those of an ITC mixture, where other ITCs of the mixture contribute to the outcome observed.  相似文献   

2.
Zhang Y 《Mutation research》2004,555(1-2):173-190
Numerous studies in rodents have documented the cancer-preventive activity of a significant number of isothiocyanates (ITCs), the majority of which occur in plants, especially in cruciferous vegetables. Dietary ITCs may play an important role in the prevention of human cancers. Several recent epidemiological studies have already shown that dietary consumption of ITCs inversely correlates with the risk of developing lung, breast and colon cancers. ITCs are principally metabolized through the mercapturic acid pathway in vivo, giving rise to N-acetylcysteine conjugates, which are excreted in the urine. Analytical methods have been developed to allow detection of ITCs and their metabolites formed in the mercapturic acid pathway. Studies show that total urinary level of ITC equivalent is an excellent biomarker of human exposure to ITCs. Moreover, these methods also have made it possible to learn the bioavailability of ITCs from cruciferous vegetables. ITCs possess multiple anticarcinogenic mechanisms, including inhibition of carcinogen-activating enzymes, induction of carcinogen-detoxifying enzymes, increase of apoptosis, arrest of cell cycle progression, as well as several other mechanisms that are not yet fully described. These mechanisms, which are discussed in detail in this review, illustrate the remarkable ability of ITCs to inhibit cancer development-effective against both developing and developed cancer cells.  相似文献   

3.
4.
N-Acetylcysteine (NAC) has been widely used in cell culture-based studies for the role of reactive oxygen species (ROS) generation in apoptosis induction by isothiocyanates (ITCs). Here we have demonstrated, using [14C]phenethyl ITC and [14C]sulforaphane, that NAC pretreatment significantly reduces ITC cellular uptake by conjugating with ITCs in the medium, suggesting that reduced uptake of ITCs, rather than the antioxidant activity of NAC itself, is responsible for the diminished downstream apoptotic effects. The study provides a cautionary note on the assay in studying mechanisms of apoptosis by ITCs and other electrophilic and thiol-reactive compounds.  相似文献   

5.
A well-known method for quantification of isothiocyanates (ITCs) and their metabolites is the condensation reaction with 1,2-benzenedithiole to produce 1,3-benzodithiole-2-thione, which can be quantified by high-performance liquid chromatography. Standards of an ITC metabolite and 1,3-benzodithiole-2-thione are required for this assay but are not commercially available. In the present study, we report on an improved synthesis of the ITC metabolite N-acetyl-S-(N-4-methylsulfinylbutylthiocarbamoyl)-L-cysteine and 1,3-benzodithiole-2-thione. The standards were used to quantify the urinary excretion of ITCs from 10 healthy subjects who consumed 350 g broccoli. The excretion was investigated throughout 48 h showing a cumulative urinary ITC excretion of 49.1+/-25.2% of the dose.  相似文献   

6.
Isothiocyanates (ITCs) found in cruciferous vegetables, including benzyl-ITC (BITC), phenethyl-ITC (PEITC), and sulforaphane (SFN), inhibit carcinogenesis in animal models and induce apoptosis and cell cycle arrest in various cell types. The biochemical mechanisms of cell growth inhibition by ITCs are not fully understood. Our recent study showed that ITC binding to intracellular proteins may be an important initiating event for the induction of apoptosis. However, the specific protein target(s) and molecular mechanisms were not identified. In this study, two-dimensional gel electrophoresis of human lung cancer A549 cells treated with radiolabeled PEITC and SFN revealed that tubulin may be a major in vivo binding target for ITC. We examined whether binding to tubulin by ITCs could lead to cell growth arrest. The proliferation of A549 cells was significantly reduced by ITCs, with relative activities of BITC > PEITC > SFN. All three ITCs also induced mitotic arrest and apoptosis with the same order of activity. We found that ITCs disrupted microtubule polymerization in vitro and in vivo with the same order of potency. Mass spectrometry demonstrated that cysteines in tubulin were covalently modified by ITCs. Ellman assay results indicated that the modification levels follow the same order, BITC > PEITC > SFN. Together, these results support the notion that tubulin is a target of ITCs and that ITC-tubulin interaction can lead to downstream growth inhibition. This is the first study directly linking tubulin-ITC adduct formation to cell growth inhibition.  相似文献   

7.
Although it has been documented that plants generate isothiocyanates (ITCs) through the glucosinolate-myrosinase system to defend against biotic stresses, the roles of ITCs in defending against abiotic stresses have scarcely been studied. Here, we report that exogenously applied ITCs enhance the heat tolerance of Arabidopsis thaliana. Pre-administration of phenethyl ITC to Arabidopsis plants mitigated growth inhibition after heat stress at 55?°C for 1?h. Although methyl ITC and allyl ITC also tended to reduce the growth inhibition that the same heat treatment caused, the reduction effects were weaker. The expression levels of heat shock protein 70 genes in Arabidopsis were elevated after phenethyl ITC treatment. These results suggest that ITCs may act as heat-tolerance enhancers in plants.  相似文献   

8.
In this study, we have developed a novel method to identify isothiocyanate (ITC)-targeted molecules using two well-studied ITCs: benzyl ITC (BITC) and phenethyl ITC (PEITC). The principle of this method is based on identifying a pattern of differences between BITC and PEITC given that they show similar chemical and biological behaviors. For method validation, dithiothreitol-reduced bovine insulin as a model molecule was incubated with either BITC or PEITC, and digested peptides were analyzed by ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) and liquid chromatography quadrupole TOF-MS (LC-Q-TOF-MS). Three peptides-NYCN, FVNQHLCGSHLVE, and ALYLVCGE-were identified as being adducted with BITC or PEITC on their cysteine residues. Each set of peptides adducted with either BITC or PEITC showed retention times (RT(BITC)相似文献   

9.
Glucosinolates are activated plant defenses common in the order Brassicales that release isothiocyanates (ITCs) and other hydrolysis products upon tissue damage. The reactive ITCs are toxic to insects resulting in reduced growth, delayed development and occasionally mortality. Generalist lepidopteran larvae often detoxify ingested ITCs via conjugation to glutathione (GSH) and survive on low glucosinolate diets, but it is not known how this process influences other aspects of metabolism. We investigated the impact of the aliphatic 4-methylsulfinylbutyl-ITC (4msob-ITC, sulforaphane) on the metabolism of Spodoptera littoralis larvae, which suffer a significant growth decline on 4msob-ITC-containing diets while excreting ITC-glutathione conjugates and their derivatives in the frass. The most striking effects were a decrease of GSH in midgut tissue and hemolymph due to losses by conjugation to ITC during detoxification, and a decline of the GSH biosynthetic precursor cysteine. Protein content was likewise reduced by ITC treatment suggesting that protein is actively catabolized in an attempt to supply cysteine for GSH biosynthesis. The negative growth and protein effects were relieved by dietary supplementation with cystine. Other consequences of protein breakdown included deamination of amino acids with increased excretion of uric acid and elevated lipid content. Thus metabolic detoxification of ITCs provokes a cascade of negative effects on insects that result in reduced fitness.  相似文献   

10.
11.
Seow A  Vainio H  Yu MC 《Mutation research》2005,592(1-2):58-67
Isothiocyanates (ITCs) are widely distributed in cruciferous vegetables and are biologically active against chemical carcinogenesis due to their ability to induce phase II conjugating enzymes. Among these is the glutathione-S-transferase (GST) family of enzymes, which in turn catalyzes the metabolism of ITCs, for which it has high substrate specificity. A recent body of epidemiologic data on the inverse association between cruciferous vegetable/ITC intake and cancers of the colo-rectum, lung and breast, also support that this protective effect is greater among individuals who possess the GSTM1 or T1 null genotype, and who would be expected to accumulate higher levels of ITC at the target tissue level, a pre-requisite for their enzyme-inducing effects. The association between ITC and cancer, and its modification by GST status, is most consistent for lung cancer and appears to be strongest among current smokers. Within limits, a comparison between groups which have been stratified by GST genotype may be less susceptible to confounding by other variables, given the random assortment of genes in gametogenesis. While a more complete understanding of the overall effects on health will need to take into account other components such as indoles and anti-oxidants, the interaction between ITC intake and GST genotype may provide a firmer basis to support a biologically significant role for ITC in cruciferous vegetables.  相似文献   

12.
Studies in animal models have indicated that dietary isothiocyanates (ITCs) exhibit cancer preventive activities through carcinogen detoxification-dependent and -independent mechanisms. The carcinogen detoxification-independent mechanism of cancer prevention by ITCs has been attributed at least in part to their ability to induce apoptosis of transformed (initiated) cells (e.g. through suppression of IκB kinase and nuclear factor κB as well as other proposed mechanisms). In the current studies we show that ITC-induced apoptosis of oncogene-transformed cells involves thiol modification of DNA topoisomerase II (Top2) based on the following observations. 1) siRNA-mediated knockdown of Top2α in both SV40-transformed MEFs and Ras-transformed human mammary epithelial MCF-10A cells resulted in reduced ITC sensitivity. 2) ITCs, like some anticancer drugs and cancer-preventive dietary components, were shown to induce reversible Top2α cleavage complexes in vitro. 3) ITC-induced Top2α cleavage complexes were abolished by co-incubation with excess glutathione. In addition, proteomic analysis revealed that several cysteine residues on human Top2α were covalently modified by benzyl-ITC, suggesting that ITC-induced Top2α cleavage complexes may involve cysteine modification. Interestingly, consistent with the thiol modification mechanism for Top2α cleavage complex induction, the thiol-reactive selenocysteine, but not the non-thiol-reactive selenomethionine, was shown to induce Top2α cleavage complexes. In the aggregate, our results suggest that thiol modification of Top2α may contribute to apoptosis induction in transformed cells by ITCs.  相似文献   

13.
Histone deacetylases (HDACs) and acetyltransferases have important roles in the regulation of protein acetylation, chromatin dynamics and the DNA damage response. Here, we show in human colon cancer cells that dietary isothiocyanates (ITCs) inhibit HDAC activity and increase HDAC protein turnover with the potency proportional to alkyl chain length, i.e., AITC < sulforaphane (SFN) < 6-SFN < 9-SFN. Molecular docking studies provided insights into the interactions of ITC metabolites with HDAC3, implicating the allosteric site between HDAC3 and its co-repressor. ITCs induced DNA double-strand breaks and enhanced the phosphorylation of histone H2AX, ataxia telangiectasia and Rad3-related protein (ATR) and checkpoint kinase-2 (CHK2). Depending on the ITC and treatment conditions, phenotypic outcomes included cell growth arrest, autophagy and apoptosis. Coincident with the loss of HDAC3 and HDAC6, as well as SIRT6, ITCs enhanced the acetylation and subsequent degradation of critical repair proteins, such as CtIP, and this was recapitulated in HDAC knockdown experiments. Importantly, colon cancer cells were far more susceptible than non-cancer cells to ITC-induced DNA damage, which persisted in the former case but was scarcely detectable in non-cancer colonic epithelial cells under the same conditions. Future studies will address the mechanistic basis for dietary ITCs preferentially exploiting HDAC turnover mechanisms and faulty DNA repair pathways in colon cancer cells vs. normal cells.  相似文献   

14.
The diversity of herbivorous insects is attributed to their propensity to specialize on toxic plants. In an evolutionary twist, toxins betray the identity of their bearers when herbivores coopt them as cues for host-plant finding, but the evolutionary mechanisms underlying this phenomenon are poorly understood. We focused on Scaptomyza flava, an herbivorous drosophilid specialized on isothiocyanate (ITC)-producing (Brassicales) plants, and identified Or67b paralogs that were triplicated as mustard-specific herbivory evolved. Using in vivo heterologous systems for the expression of olfactory receptors, we found that S. flava Or67bs, but not the homologs from microbe-feeding relatives, responded selectively to ITCs, each paralog detecting different ITC subsets. Consistent with this, S. flava was attracted to ITCs, as was Drosophila melanogaster expressing S. flava Or67b3 in the homologous Or67b olfactory circuit. ITCs were likely coopted as olfactory attractants through gene duplication and functional specialization (neofunctionalization and subfunctionalization) in S. flava, a recently derived herbivore.  相似文献   

15.
Dietary and pharmacologic isothiocyanates (ITCs) may play a role in reducing the risk of certain cancers. The quantification of ITCs in humans is important both for epidemiological and pharmacokinetic studies. We describe a modification of an HPLC-based assay of urinary ITCs for use with human plasma. The assay utilizes the cyclocondensation reaction of 1,2-benzenedithiol with ITCs present in human plasma, followed by a two-step hexane extraction and analysis by HPLC using UV detection at 365 nm. The method shows linearity and reproducibility with human plasma over a range of 49-3003 nM phenethyl isothiocyanate (PEITC) (r(2) = 0.996 +/- 0.003). A similar degree of linearity was seen with two other biologically occurring conjugates of PEITC: PEITC--N-acetylcysteine (PEITC--NAC) and PEITC--glutathione (PEITC--GSH). The recovery of PEITC assessed on multiple days was 96.6 +/- 1.5% and was 100% for PEITC--GSH and PEITC--NAC. The reproducibility of the assay on multiday samplings showed a mean %CV of 6.5 +/- 0.3% for PEITC, 6.4 +/- 4.3 for PEITC--NAC and 12.3 +/- 3.9 for PEITC--GSH. In clinical studies, mean plasma ITC level of 413 +/- 193 nM PEITC equivalents was determined for a non-dietary-controlled group of 23 subjects. Multiday analysis data from pharmacokinetic plasma sets of 3 subjects taking a single dose of PEITC at 40 mg showed a good CV (range: 16-21%). The applicability of the methodology to pharmacokinetic studies of PEITC in humans is demonstrated.  相似文献   

16.
An important and promising group of compounds that have a chemopreventive property are organosulfur compounds, such as isothiocyanates (ITCs). In recent years, it has been shown that ITCs induce apoptosis in various cancer cell lines and experimental rodents. During the course of apoptosis induction by ITC, multiple signal-transduction pathways and apoptosis intermediates are modulated. We have also clarified the molecular mechanism underlying the relationship between cell cycle arrest and apoptosis induced by benzyl isothiocyanate (BITC), a major ITC compound isolated from papaya. The exposure of cells to BITC resulted in the inhibition of the G2/M progression that coincided with not only the up-regulated expression of the G2/M cell cycle arrest-regulating genes but also the apoptosis induction. The experiment using the phase-specific synchronized cells demonstrated that the G2/M phase-arrested cells are more sensitive to undergoing apoptotic stimulation by BITC than the cells in other phases. We identified the phosphorylated Bcl-2 as a key molecule linking the p38 MAPK-dependent cell cycle arrest with the JNK activation by BITC. We also found that BITC induced the cytotoxic effect more preferentially in the proliferating normal human colon epithelial cells than in the quiescent cells. Conversely, treatment with an excessive concentration of BITC resulted in necrotic cell death without DNA ladder formation. This review addresses the biological impact of cell death induction by BITC as well as other ITCs and the involved signal transduction pathways.  相似文献   

17.
18.
In this study, the antifungal effects of six different isothiocyanate (ITCs) compounds (methyl, allyl, butyl, ethyl, benzyl and 2-phenylethyl ITCs) were investigated to be use against the citrus sour rot disease caused by Geotrichum citri-aurantii in vitro and semi-commercial (in vivo) conditions. Antifungal activities of the vapour phases of different ITC compounds were examined on the arthroconidia germination and mycelial growth of G. citri-aurantii. Mycelial growth of G. citri-aurantii was inhibited in a concentration-dependent way. The minimum inhibitory concentrations of benzyl, methyl, allyl and ethyl ITCs on mycelial growth were 0.06, 0.08, 0.10 and 0.10 µl/L, respectively. Arthroconidia germination of G. citri-aurantii was completely inhibited by benzyl, methyl, allyl and ethyl ITCs at concentrations of 0.05, 0.07, 0.07 and 0.07 µl/L, respectively. Light microscopy observations revealed that the ITC compounds, at completely inhibiting concentrations, caused considerable morphological changes in the fungal hyphae. Under in vivo conditions, the average rotting area caused by G. citri-arantii was inhibited 100% by ethyl, methyl and allyl ITC compounds at concentrations of 8.0, 12.0 and 12.0 µl/L, respectively. Results suggest that ITC’s may be useful and effective natural antifungal compounds to control the citrus sour rot disease agent.  相似文献   

19.
《Biomarkers》2013,18(8):739-745
Isothiocyanates (ITCs) found in cruciferous vegetables have been associated with a reduced cancer risk in humans. We determined serum albumin adducts of allyl isothiocyanate (AITC), benzylisothiocyanate (BITC), phenylethylisothiocyanate (PEITC) and sulforaphane (SFN) in 85 healthy men from a dietary, randomized, controlled trial. After enzymatic digestion of albumin we determined the adducts of the ITCs with lysine (Lys) using liquid chromatography–tandem mass spectrometry. At the beginning of the study (and after 4 weeks) 4.7% (2.4%), 48.2% (35.3%), 5.9% (10.6%), and 24.7% (23.5%) of the samples were found positive for AITC-Lys, BITC-Lys, PEITC-Lys and SFN-Lys, respectively. This method enables the quantification of ITC adducts in albumin from large, prospective studies on diet and cancer.  相似文献   

20.
To support drug discovery efforts for cyclin-dependent kinase 2 (CDK2), a moderate-throughput binding assay that can rank order or estimate the affinity of lead inhibitors has been developed. The method referred to as temperature-dependent circular dichroism (TdCD) uses the classical temperature-dependent unfolding of proteins by circular dichroism (CD) to measure the degree of protein unfolding in the absence and presence of potential inhibitors. The midpoint of unfolding is the Tm value. Rank ordering the affinity and predictions of the dissociation constant of compounds is obtained by measuring the increase in Tm for different protein-inhibitor complexes. This is the first time an extensive characterization of the TdCD method has been described for characterizing lead inhibitors in a drug discovery mode. The method has several favorable properties. Using the new six-cell Peltier temperature controller for the Jasco 810 spectropolarimeter, one can determine the affinity of 12-18 compounds per day. The method also requires only 20-40 microg protein per sample and can be used to estimate the affinity of compounds with dissociation constants of picomolar to micromolar. An important property of the method for lead discovery is that dissociation constants of approximately 5 microM can be estimated from a single experiment using a low concentration of compound such as 20 microM, which is generally low enough for most small molecules to be soluble for testing. In addition, the method does not require labeling the compound or protein. Although other methods such as isothermal titration calorimetry (ITC) can provide a full thermodynamic characterization of binding, ITC requires 1-2 mg protein per sample, cannot readily determine binding constants below nanomolar values, is most versatile with soluble compounds, and has a throughput of two to three experiments per day. The ITC method is not usually used in a high-throughput drug discovery mode; however, using the thermodynamic information from several ITC experiments can make the TdCD method very robust in determining reliable binding constants. Using the kinase inhibitors BMS-250595, purvalanol B, AG-12275, flavopiridol, and several other compounds, it is demonstrated that one can obtain excellent comparisons between the Kd values of binding to CDK2 obtained by TdCD and ITC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号