首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ultrastructure of sporozoites and zoites of Hammondia heydorni was studied in cultured bovine cells. In addition to ultrastructural features typical of coccidian parasites, H. heydorni sporozoites and zoites contain rhoptries that are located posteriorly as well as anteriorly. Also, sporozoites contain a posteriorly located crystalloid body (1.2 micron in diameter); a small crystalloid body (0.5 micron in diameter) was occasionally seen in the anterior end. Zoites resulting from the 1st division of endodyogeny contain a posteriorly located crystalloid body, which is absent in zoites formed by subsequent divisions. Zoites contain posteriorly located amylopectin granules and a relatively large anterior vacuole which is not present in sporozoites. During penetration, the host cell plasmalemma ballooned laterally around the sporozoite creating a large cavity, which later disappeared. Sporozoites and zoites undergoing cell penetration usually exhibit partially empty anterior rhoptries; no changes occur in posterior rhoptries. Lysosomes fuse with the parasitophorous vacuole surrounding killed sporozoites but not live sporozoites.  相似文献   

2.
Equine protozoal myeloencephalitis is a major cause of neurological disease in horses from the Americas. Horses are considered accidental intermediate hosts. The structure of sporocysts of the causative agent, Sarcocystis neurona, has never been described. Sporocysts of S. neurona were obtained from the intestines of a laboratory-raised opossum fed skeletal muscles from a raccoon that had been fed sporocysts. Sporocysts were 11.3 by 8.2 microm and contained 4 sporozoites. The appearance of the sporocyst residuum was variable. The residuum of some sporocysts was composed of many dispersed granules, whereas some had granules mixed with larger globules. Excystation was by collapse of the sporocyst along plates. The sporocysts wall was composed of 3 layers: a thin electron-dense outer layer, a thin electron-lucent middle layer, and a thick electron-dense inner layer. The sporocyst wall was thickened at the junctions of the plates. Sporozoites were weakly motile and contained a centrally or posteriorly located nucleus. No retractile or crystalloid body was present, but lipidlike globules about 1 microm in diameter were usually present in the conoidal end of sporozoites. Sporozoites contained 2-4 electron-dense rhoptries and other organelles typical of coccidian zoites. Sporozoites entered host cells in culture and underwent schizogony within 3 days.  相似文献   

3.
ABSTRACT. The development of Sarcocystis cruzi was studied in an 11-day-old calf killed seven days postinoculation with 5 × 108 sporocysts from feces of coyotes. Uninucleate zoites were found in arteries of mesenteric lymph nodes but not in other organs. Zoites measured 4.9 × 3.0 (3.5–7.0 × 2.1–3.5) μm. Of the 36 zoites studied, 31 were in endothelial cells, four were in macrophages in the lumen of arteries, and one was free in the lumen of an artery. Infected endothelial cells were two to three times larger than uninfected cells. Zoites appeared structurally similar to sporozoites. The occurrence of zoites in macrophages suggests that sporozoites of Sarcocystis might use such cells to reach the site of their first merogony.  相似文献   

4.
. Dividing tachyzoites of Neospora caninum were 4x3 μm and had ultrastructural characteristics typical for the cyst-forming coccidia. Unusual ultrastructural characteristics of fully-formed tachyzoites included no micropores, 8–12 anterior and 4–6 posterior rhoptries, and a few posterior micronemes. Most tachyzoites were located free in the host cell cytoplasm; only a few occurred within a parasitophorous vacuole. Parasite multiplication appeared to be rapid because most organisms were in various stages of endodyogeny. Neural tissue cysts of N. caninum were 24.3 × 19.2 μm and contained 50–200 bradyzoites (7.3 × 1.5 μm), which lacked micropores. The cyst wall was 0.74–1.12 μm thick and consisted of the primary cyst wall (the parasitophorous vacuole membrane) and a thick granular layer with electron-dense vesicles.  相似文献   

5.
The asexual development of Eimeria contorta from sporozoites to first-generation merozoites in tissue culture was investigated with the electron microscope. Sporozoites with a three-layered pellicle, 26 subpellicular microtubules, a conoid, 4-7 rhoptries, and an abundance of micronemes actively entered host cells and showed direct contact to the host cell's cytoplasm. Shortly after penetration, small vacuoles surrounding the parasite merged into a parasitophorous vacuole. Inside this vacuole, sporozoites assumed a definite U-shape before transformation into schizonts took place. This process was characterised by the occurrence of subpellicular microtubules exclusively in the anterior half of the sporozoite, by a degeneration of the 2 inner pellicular membranes, by an outpocketing of the parasite's surface, and by the arrangement of microtubules in clusters. About 25 merozoites were formed at the surface of mature schizonts, to which they remained attached at their posterior pole. A polar ring was present at that area. Anterior and posterior refractile bodies were conspicuous in merozoites and showed close association with mitochondria. The significance of a fibrillar substructure in rhoptries and micronemes is discussed, and special attention is drawn to the pathway of nutrient transport from host cell mitochondria and dictyosomes through intravacuolar folds, parasitophorous vacuole and crescent body into the parasite's food vacuoles.  相似文献   

6.
Sporozoites were excysted from oocysts of Hammondia heydorni obtained from a naturally-infected dog and inoculated into monolayer cultures of bovine pulmonary artery endothelial cells (CPA), Madin-Darby bovine kidney (MDBK) cells, bovine monocytes (M617), or ovine monocytes (WOMO). Sporozoites penetrated all four cell lines and underwent asexual reproduction by endodyogeny (as determined by electron microscopy) to form cyst-like structures at four to nine days after sporozoite inoculation (DAI). At 4-10 DAI, considerably more zoites were harvested from M617 cultures (80.1 x 10(6) zoites) than from CPA (17.4 x 10(6], MDBK (47.3 x 10(6], and WOMO (53.5 x 10(6]. Little or no parasite multiplication occurred at 10-16 DAI. Zoites harvested at 7 DAI and transferred to freshly prepared cultures did not penetrate cells nor develop further.  相似文献   

7.
SYNOPSIS. Oocysts of Isospora marquardti sp. n. from the Colorado pika, Ochotona princeps , have spheroid oocysts, 30.5 (23–36) μm in diameter, and ovoid sporocysts, measuring 19.3 × 12.0 (17–22 × 10–14) μm. A polar body, 2 × 4 μm, a spheroid sporocyst residuum (8.3 μm in diameter), a Stieda body, and a distinct substiedal body (3 × 3 μm) are present. A micropyle and an oocyst residuum are absent. Excysted sporozoites, averaging 3.0 × 18.5 (2–4 × 15–20) μm, contain 2 refractile globules, 1 on each side of the nucleus with a prominent nucleolus.
The sporozoite excystation process using a trypsin-sodium taurocholate fluid is described.  相似文献   

8.
ABSTRACT. First and second generation schizogony of Leucocytozoon caulleryi occurred in chickens infected with sporozoites. First generation schizogony was studied by light and electron microscopy. First-generation schizonts were first detected in capillary endothelial cells in the spleen, lung, liver, and bursa of Fabricius between 3 and 6 d post-sporozoite inoculation (DPI). The schizonts ranged from 15 to 65 μm in diameter and were surrounded by a thin pellicle. Early schizonts contained numerous round or oval nuclei, endoplasmic reticulum, and mitochondria. The schizonts reached maturity 5 DPI and produced first-generation merozoites which were released into the peripheral bloodstream. The merozoites. which were infective to chickens, measured 7.1 μm in length. They were slender and had a large nucleus, a mitochondrion, and an apical complex consisting of three polar rings, rhoptries, numerous micronemes. The morphology of first-generation merozoites was different from that of second-generation merozoites.  相似文献   

9.
Examination of three scallop species from three separate locations: Iceland scallop from Icelandic waters, king scallop from Scottish waters and queen scallop from Faroese and Scottish waters, revealed infections of a previously unknown apicomplexan parasite in all three scallop species. Developmental forms observed in the shells appeared to include both sexual and asexual stages of the parasite, i.e. merogony, gametogony and sporogony, which suggests a monoxenous life cycle. Meronts, gamonts, zygotes and mature oocysts were solely found in the muscular tissue. Zoites, which could be sporozoites and/or merozoites, were observed in great numbers, most frequently in muscles, both intracellular and free in the extracellular space. Zoites were also common inside haemocytes. Examination of the ultrastructure showed that the zoites contained all the major structures characterizing apicomplexans. This apicomplexan parasite is morphologically different from other apicomplexan species previously described from bivalves. Presently, its systematic position within the phylum Apicomplexa cannot be ascertained.  相似文献   

10.
Sporozoites of Eimeria vermiformis from the mouse were first seen in the epithelial cells of villus tips and the crypts of Lieberkühn four hours after inoculation (HAI). They were always within a parasitophorous vacuole. By 12 HAI, most were in crypt epithelial cells between the basement membrane and host cell nucleus. The sporozoites in the villus tips had 26 subpellicular microtubules, two polar rings, two preconoidal rings, two refractile bodies surrounded by amylopectin-like granules, a lamellar Golgi apparatus, numerous micronemes, and rhoptries. The sporozoites in the crypt cells had fewer amylopectin-like granules, micronemes, and rhoptries. A nucleolus was visible, as were pieces broken off from the posterior refractile body. Later, the sporozoites folded over to become U-shaped; the infolded membranes fused; and then the inner membranes disappeared so that spherical meronts were formed. Folding sporozoites were first seen 16 HAI and persisted until 52 HAI.  相似文献   

11.
ABSTRACT. Sporozoites of Eimeria vermiformis from the mouse were first seen in the epithelial cells of villus tips and the crypts of Lieberkühn four hours after inoculation (HAI). They were always within a parasitophorous vacuole. By 12 HAI, most were in crypt epithelial cells between the basement membrane and host cell nucleus. The sporozoites in the villus tips had 26 subpellicular microtubules, two polar rings, two preconoidal rings, two refractile bodies surrounded by amylopectin-like granules, a lamellar Golgi apparatus, numerous micronemes, and rhoptries. The sporozoites in the crypt cells had fewer amylopectin-like granules, micronemes, and rhoptries. A nucleolus was visible, as were pieces broken off from the posterior refractile body. Later, the sporozoites folded over to become U-shaped; the infolded membranes fused; and then the inner membranes disappeared so that spherical meronts were formed. Folding sporozoites were first seen 16 HAI and persisted until 52 HAI.  相似文献   

12.
A cotton rat was inoculated orally with oocysts of Caryospora bigenetica from the feces of a rattlesnake. Sixteen days later the rat was euthanized, and portions of the scrotum, foot pad and muzzle were processed for histological sections and transmission electron microscopy. Sporozoites within caryocysts had typical coccidian features such as an anterior and posterior refractile body, centrally located nucleus, micronemes, rhoptries, a conoid, a micropore near the anterior refractile body, a posterior pore, amylopectin granules, lipid bodies, a Golgi-like body, a mitochondrion and subpellicular microtubules. The infected host cell was spherical and surrounded by a fibrous wall-like covering, 0.35–1.00 μm thick. This outer covering, when viewed in stained histological sections, was periodic acid-Schiff (PAS)-positive.  相似文献   

13.
SYNOPSIS Monolayers of Embryonic Bovine Trachea (EBTr) cells were inoculated with Isospora canis Nemeséri spcrozoites. As penetration commenced, they were fixed, stained with OsO4-ruthenium red, dehydrated, embedded and sectioned in situ. Examination by electron microscopy revealed that host cell membranes remained intact during penetration. The sporozoites caused an invagination of the cell's plasmalemma until the parasites were entirely within the cell, after which the invagination was sealed by short pseudopodia enclosing the parasite within a membrane-lined vacuole inside the cells. Rhoptries and micronemes, which appeared as branched elements of the same network, became less tortuous near the conoid and often became empty or partially empty during penetration. Concurrent with the appearance of these partially empty rhoptries, vesiculations were seen in the host cell cytoplasm opposite the apical tip of the sporczoite. Constrictions of the sporozoite during entry were probably due to bands of microfilaments beneath the plasmalemma and elsewhere in the cytoplasm of the host cell.  相似文献   

14.
The ultrastructure of the cyst wall and zoites of Sarcocystis booliati from the moonrat Echinosorex gymnurus, was studied with the electron microscope. The primary cyst wall was thin, smooth and filled with a finely-granular, electron-dense material. The surface of the cyst wall had a row of vesicular invaginations. The ground substance beneath the primary cyst wall did not extend into the cyst to form septae. The zoites were covered with a double-layered membrane or pellicle and had an anterior conoid, 2 conoidal rings, 22 subpellicular microtubules, about 8 rhoptries, 50–60 micronemes, scattered lipid droplets, a micropore and a posteriorly situated nucleus, in front of which was a sac-like mitochondrion with vesicular internal cristae. The distinctive features in the ultrastructure of S. booliati were the thinness of the cyst wall, the absence of cytophaneres or trabeculae and the comparatively small number of micronemes in the zoites.  相似文献   

15.
SYNOPSIS. The fine structure of the 1st generation merozoites of Eimeria labbeana from the ileal mucosa of artificially infected pigeons ( Columba livia ) was investigated and described. The 1st generation merozoites which appeared between 36-48 hr after infection averaged 4.4 × 2.1 μm in size. The 3-membraned pellicle was irregular in texture and harbored a single micropore, and many micropore-like invaginations. Closely apposed to the inner pellicular membrane were seen 22 microtubules, each 22–25 nm in diameter. An apical vesicle, 50 nm in diameter, seen at the anterior extremity, was connected with the common duct of the micronemes. The conoid consisted of 9 spiral elements, each 30 × 25 nm. The paired organelle (rhoptries) varied in length (1.4–2.2 μm), and the ductules (23 nm diameter) were composed of 2 inner tubules, each 6 nm in diameter. A unit membrane enveloped the partially alveolar and differentially osmiophilic interior of the bulbous regions of the rhoptries. The "rod-like structure"was found to be tubular and represented the common duct of the micronemes.  相似文献   

16.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

17.
The invasion of liver parenchymal cells by sporozoites of Plasmodium berghei Vincke & Lips, 1948, was studied in vivo using transmission electron microscopy. Livers of Brown Norway rats were examined 30 and 60 min after intraportal injection of 15 million sporozoites each. Sporozoites found after incorporation into vacuoles in hepatocytes were often located near a bile canaliculus at the lateral cell surface, surrounded by hepatocyte lysosomal structures; however, degradation of sporozoites caused by lysosomal digestion inside hepatocytes was never observed. Due to the crescent shape of sporozoites, serial sections were necessary to demonstrate the actual process of invasion of the hepatocyte. The hepatocyte's plasmalemma appeared to invaginate due to the sporozoite's action, thereby creating a parasitophorous vacuole. It was suggested that the sporozoite actively penetrated the hepatocyte; however, no visible depletion of rhoptries and micronemes was observed.  相似文献   

18.
ABSTRACT. The sexual life cycle of the hemogregarine Hepatozoon mocassini was studied in Aedes aegypti , an experimental mosquito host, using transmission electron microscopy. Gamonts were observed leaving the host snake erythrocyte as early as 30 min after mosquitoes ingested infected blood, and some gamonts had penetrated the gut epithelial cells by this time. Six hours post-feeding, gamonts were identified within cells of the abdominal fat body. Twenty-four hours post-feeding, gamonts were often entrapped within the peritrophic membrane, but were no longer observed within the gut wall. Parasites pairing up in syzygy and undergoing sexual differentiatioe were observed within fat cells at this time, and by 48 hours post-feeding, well-developed macro- and microgametocytes as well as microgametes were discernible. Developing zygotes observed 3 days post-feeding were enclosed within a panoitophorous vacuole. By day 6, multinucleate oocysts with crystalloid bodies in the cytoplasm were seen. Sporazoites developing within sporocysts appeared by day 12. Seventeen days post-feeding, mature oocysts with sporocysts containing approximately 16 sporozoites were observed upon dissection of mosquitoes. Large crystalloid bodies no longer bound by rough endopbsmic reticulum were located anterior and posterior to the sporozoite nucleus. Free sporozoites were not observed.  相似文献   

19.
SYNOPSIS. The sporogonic stages of Leucocytozoon dubreuili in the midgut and salivary glands of the simuliid vectors was studied by electron microscopy. Young uninucleate oocysts have a pellicle that initially resembles that of the ookinetc. Numerous electron-dense bodies and microtubules in the peripheral cytoplasm may be involved in the formation of the cyst wall. The dense bodies appear to give rise to the amorphous material of the wall. The tubules which run circumferentially beneath the oocyst's boundary probably serve as a skeletal support for the cell surface during deposition of the wall material. A subcapsular “space” which provides area for expansion of the developing sporozoites is formed in early multinucleate oocysts. The subcapsular “space” appears to be formed through a condensation of the peripheral cytoplasm, resulting in an osmotic gradient across the oocyst's limiting membrane. Consequently water diffuses out, creating a fluid-filled space. Sporozoite formation begins with localized thickenings on the oocyst's limiting membrane. Subsequent extension of the thickened regions into the subcapsular “space” marks the onset of sporozoite budding. The process is highly synchronized, and culminates with the production of up to 150 sporozoites about the sporoblastoid body. The structure of sporozoites from mature oocysts and of the salivary glands of the vector is basically similar, although salivary gland sporozoites are more elongate and have numerous electron-dense micronemes. The paired rhoptries in the latter sporozoites are more elongate and uniformly electron-dense than in oocyst sporozoites.  相似文献   

20.
ABSTRACT. A marine kinetoplastid flagellate, Cryptobia eilatica n. sp., is described from the gills of cultured gilt-head sea bream Sparus aurata L. and wild black-spot sea bream Diplodus noct (Valenciennes) in the Red Sea. The trophozoite is elongated and lacks a contractile vacuole and undulating membrane. The body averages 13.5 × 4.1 μm, anterior flagellum 9.7 μm, and free portion of recurrent flagellum 15.2 μm. The ultrastructural features of the species exhibit great similarity to various previously studied Cryptobiids. Cryptobia eilatica trophozoites feed on bacteria, show a preference for the branc hial interlamellar crypts, and attach to the host epithelium by means of the recurrent flagellum. Neither penetration into the epithelial cells, nor any direct damage to host tissue was observed. Cryptobia eilatica inhabits a purely marine habitat, but its trophozoite tolerates salinities as low as 10 ppt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号