首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have previously shown that the arrested DNA synthesis of mutant defective in T4 phage gene 59 can be reversed by a mutation in dar. In this paper, we have examined the effect of the dar mutation on the kinetics of gene 32 protein (DNA binding protein) synthesis, DNA packaging, progeny formation, and several other porcesses. Several lines of evidence are presented showing that the regulation of synthesis of gene 32 protein is abnormal in dar 1-infected cells. In these cells, gene 32 protein, an early protein, is also expressed late in the infectious cycle. Our data also indicate that the packaging og DNA into T4 phage heads is delayed in dar mutant-infected cells, and this in turn results in a 6- to 8-min delay in intracellular progeny formation, although the synthesis of late proteins appears to be normal, as shown by gel electrophoresis. We have also studied the phenotypes of the double mutant dar-amC5 (gene 59). The increased sensitivity to hydroxyurea caused by a mutation in the dar gene can be alleviated by a second mutation in gene 59, but an increased sensitivity to UV irradiation caused by a mutation in gene 59 cannot be alleviated by a second mutation in the dar gene. Therefore, the double mutant still exhibits abnormalities in the repair of UV lesions.  相似文献   

2.
After infection of Escherichia coli B with phage T4D carrying an amber mutation in gene 59, recombination between two rII markers is reduced two- to three-fold. This level of recombination deficiency persists even when burst size similar to wild type is induced by the suppression of the mutant DNA-arrest phenotype. In the background of two other DNA-arrest mutants in genes 46 and 47, a 10- to 11-fold reduction in recombination is observed. The cumulative effect of gene 59 mutation on gene 46-47 mutant suggests that complicated interactions must occur in the production of genetic recombinants. The DNA-arrest phenotype of gene 59 mutant can be suppressed by inhibiting the synthesis of late phage proteins. Under these conditions, DNA replicative intermediates similar to those associated with wild-type infection are induced. Synthesis of late phage proteins, however, results in the degradation of mutant 200S replicative intermediate into 63S DNA molecules even in the absence of capsid assembly. Although these 63S molecules are associated with membrane, they do not replicate. These results suggest a role for gene 59 product, in addition to a possible requirement of concatemeric DNA in late replication of phage T4 DNA.  相似文献   

3.
J R Wu  Y C Yeh    K Ebisuzaki 《Journal of virology》1984,52(3):1028-1031
A genetic study of the T4 dar (DNA arrested synthesis restoration) mutations was performed by two- and three-factor crosses. The dar mutations restore the viability of gene 59 mutants. Mapping studies of the dar mutations indicated that the dar gene extended over 16 map units. This high recombination frequency is attributed to an increased level of recombination in the dar region. Two other mutations, uvsY and uvsW, known to be located in the vicinity of dar, were studied. These studies indicated that the uvsY and dar mutations were located in separate genes but that dar and uvsW were allelic. The genes are ordered as follows: gene 24, dar(uvsW), uvsY, and gene 25 in clockwise order.  相似文献   

4.
The effect of bacteriophage T4 gene 59 mutations (DNA-arrested synthesis) on kinetics of DNA synthesis, gene expression, and stability of mRNA has been studied. When Escherichia coli B was infected by a T4 gene 59 mutant, DNA synthesis proceeded to increase linearly after initiation, but started to decrease at 8 min and was completely arrested at 12 min at 37°C. At various incubation temperatures (20 to 42°C), the initial rates and times of arrest of DNA synthesis were different, but the total amount of DNA synthesized was constant. This result supports the hypothesis that function of gene 59 is required for the conversion of 63S DNA molecules to other replicative intermediates (39). The abnormality in protein synthesis caused by gene 59 mutation is manifested by (i) a delayed shutoff in the expression of early proteins (gene 43, 46, 39, 52, 63, 42-45, and some unidentified proteins), (ii) a reduced rate of late gene expression (gene 34, 37, 18, 20, 23, wac, 24, 22, 38, and 19), and (iii) an absence of cleavage of certain late proteins (23, 24, IPIII and 22 to 23*, 24*, IPIII*, and small fragments). It appears that there was no effect on the expression of gene 33, 55, and 32 by a mutation in gene 59. Results obtained from an addition of rifampin at the prereplicative cycle after infection indicated that mRNA from genes 43, rIIA, 46, 39, 52, and 63 are more stable in T4amC5 (gene 59) than in wild-type-infected cells. mRNA remained functional longer in mutant-infected cells, and this may explain the prolonged synthesis of certain early proteins. The gene expression of other DNA arrested mutants—those in genes 46 and 47—showed a pattern of abnormal protein synthesis similar to that found in gene 59 mutant-infected cells, except more late proteins are synthesized. The gene expression in terms of phage DNA structure is discussed.  相似文献   

5.
We have investigated, by electron microscopy, replicative intermediate produced early after infection of Escherichia coli with two phage T4 gene 32 mutants (amA453 and tsG26) which replicate their parental DNA but are defective in secondary replications and in moderating the activities of recombination nucleases. Under conditions completely restrictive for progeny production, both of these mutant produced replicative intermediates, each containing a single internal loop. Both branches of these loops were double stranded; i.e., both leading and lagging strands were synthesized. The replicative intermediates of these mutants qualitatively and quantitatively resembled early replicating wild-type T4 chromosomes after solitary infection of E. coli. However, in contrast to intracellular wild-type T4 DNA isolated from multiple infection, the mutant DNAs showed neither multiple branches nor multiple tandem loops. These results demonstrate that a truncated gene 32 protein which consists of less than one-third of the wild-type T4 helix-destabilizing protein can facilitate the functions of T4 replication proteins, specifically those of T4 DNA polymerase and priming proteins. Our results also support the hypothesis that the generation of multiple tandem loops or branches in vegetative T4 DNA depends on recombination (Mosig et al., in B. Alberts, ed., Mechanistic Studies of DNA Replication and Genetic Recombination, p. 527-543, Academic Press, Inc., New York, 1980).  相似文献   

6.
Non-essential bacteriophage T4 mutants uvs58 and uvs79 showed a lower UV sensitivity than either the excision-repair mutant v am5 or the replication-dependent recombination-repair mutant y10. The UV sensitivity of double and triple mutants carrying one of the mutations uvs58 or uvs79, and v am 5 or (and) y10 was higher than the sum of the sensitivities of the single mutants. The uvs58 mutation was mapped to the early gene region, close to amN81 (gene 41). The unirradiated mutants uvs58 and uvs79 accumulated newly synthesized DNA at a slower rate than wild-type T4. Double mutants uvs58:am59 and uvs79:am59 showed DNA synthesis in E. coli B su- to be arrested at a 3--5 times lower level than that in am59-infected cells. Chloramphenicol, added 9--12 min after infection, suppressed arrests of DNA synthesis, the double mutants showing a lag of 8 min as compared with am59. Results from analysis of sucrose gradients of parental uvs58 and uvs79 DNA were in agreement with the suggestion of a mutation in an early function. The mutants uvs58 and uvs79 are suggested to be defective in a component of the DNA replication apparatus with a function in the adaptation to irregularities in the DNA structure. The third pathway of UV repair is tentatively designated as non-catalytic replication repair.  相似文献   

7.
The in vivo function of the gene 2 protein of bacteriophage T7 has been examined. The gene 2 protein appears to modulate the activity of the gene 3 endonuclease in order to prevent the premature degradation of any newly-formed DNA concatemers. This modulation is not however a direct interacton between the two proteins. In single-burst experiments rifamycin can substitute for the gene 2 protein, allowing formation of fast-sedimenting replicative DNA intermediates and progeny phage production. This suggests that the sole function of the gene 2 protein is inhibition of the host RNA polymerase and that the latter enzyme directs or promotes the endonucleolytic action of the gene 3 protein.  相似文献   

8.
With the exception of mutants in gene 49, all mutants in phage T4 defective in the process of head filling accumulate a normal replicative DNA intermediate of 200S. Mutants in gene 49 produce a very fast-sedimenting (VFS) DNA with s values of greater than 1,000S. The intracellular development of the VFS-DNA generated in gene 49-defective phage-infected cells was followed by sedimentation analysis of crude lysates on neutral sucrose gradients. It was observed that the production of a 200S replicative intermediate is one step in the development of VFS-DNA. After restoring permissive conditions the development of the VFS-DNA can be reversed, but the 200S form is not regenerated under these conditions. The process of head filling can take place from the VFS-DNA under permissive conditions. From the absence of other components in the VFS-DNA complexes, its high resistance to shearing, its resistance against the attack of the single-strand-specific nuclease S1, and from its appearance in the electron microscope, a complex structure of tightly packed DNA is inferred. The demonstration by the electron microscope of branched DNA structures sometimes closely related to partially filled heads is taken in support of the idea that the process of head filling in gene 49-defective phage-infected cells is blocked by some steric hindrance in the DNA. In light of these results, the role of gene 49 is discussed as a control function for the clearance of these structures. A fixation procedure for cross-linking of gene 49-defective heads to the VFS-DNA allowed us to study progressive stages in the process of head filling. Electron microscopic evidence is presented which suggests that during the initial events the DNA accumulates in the vertexes of the head.  相似文献   

9.
Mutations termed das were isolated originally (Hercules and Wiberg, 1971) as partial suppressors of mutants in phage T4 genes 46 and 47. Since mutants in genes 46, 47, and 59 exhibit both an early arrest of phage DNA synthesis and the loss of this arrest in the presence of chloramphenicol or of mutations of T4 genes 33 and 55, we asked whether a das mutation can also suppress a gene 59 mutant. We find that it cannot--either at the level of phage production or DNA synthesis.  相似文献   

10.
Wu JR  Yeh YC 《Journal of virology》1975,15(5):1096-1106
Suppressors of gene 59-defective mutants were isolated by screening spontaneous, temperature-sensitive (ts) revertants of the amber mutant, amC5, in gene 59. Six ts revertants were isolated. No gene 59-defective ts recombinant was obtained by crossing each ts revertant with the wild type, T4D. However, suppressors of gene 59-defective mutants were obtained from two of these ts revertants. These suppressor mutants are referred to as dar (DNA arrested restoration). dar mutants specifically restored the abnormalities, both in DNA synthesis and burst size, caused by gene 59-defective mutants to normal levels. It is unlikely that dar mutants are nonsense suppressors since theý failed to suppress amber mutations in 11 other genes investigated. The genetic expression of dar is controlled by gene 55; therefore, dar is a late gene. The genetic location of dar has been mapped between genes 24 and 25, a region contiguous to late genes. dar appears to be another nonessential gene of T4 since burst sizes of dar were almost identical to those of the wild type. Mutations in dar did not affect genetic recombination and repair of UV-damaged DNA, but caused a sensitivity to hydroxyurea in progeny formation. The effect of the dar mutation on host DNA degradation cannot account for its hydroxyurea sensitivity. dar mutant alleles were recessive to the wild-type allele as judged by restoration of arrested DNA synthesis. The possible mechanisms for the suppression of defects in gene 59 are discussed.  相似文献   

11.
R Wu  J L Wu    Y C Yeh 《Journal of virology》1975,16(1):5-16
Nonsense mutants in gene 59 (amC5, amHL628) were used to study the role of this gene in the repair of UV-damaged and alkylated DNA of bacteriophage T4 in vivo. The higher sensitivity to UV irradiation and alkylation of gene 59 mutants after exposure to these agents was established by a comparison of the survival fractions with wild type. Zonal centrifugal analysis of both parental and nascent mutant intracellular DNA molecules after UV irradiation showed that immediately after exposure the size of single-stranded DNA fragments was the same as the wild-type intracellular DNA. However, the capability of rejoining fragmented intracellular DNA was greatly reduced in the mutant. In contrast, the wild-type-infected cells under the same condition resumed DNA replication and repaired its DNA to normal size. Methyl methanesulfonate induced more randomly fragmented intracellular DNA, when compared to UV irradiation. The rate of rejoining under these conditions as judged from their sedimentation profiles was also greatly reduced in mutant-infected cells. Further evidence is presented that UV repair is not a simple consequence of arrested DNA replication, which is a phenotype of the mutant when infected in a nonpermissive host, Escherichia coli B (su minus), but rather that the DNA repair function of gene 59 is independent of the replication function. These and other data presented indicate that a product(s) of gene 59 is essential for both repair of UV lesions and repair of alkylation damage of DNA in vivo. It is suggested that gene 59 may have two functions during viral development: DNA replication and replication repair of DNA molecules.  相似文献   

12.
Role of gene 2 in bacteriophage T7 DNA synthesis.   总被引:8,自引:5,他引:3       下载免费PDF全文
Studies have been carried out to elucidate the in vivo function of gene 2 in T7 DNA synthesis. In gene 2-infected cells the rate of incorporation of (3-H)thymidine into acid-insoluble material is about 60% that of cells infected with T7 wild type. Gene 2 mutants do not however produce viable phage after infection of the nonpermissive host. In T7 wild type-infected cells, a major portion of the newly alkaline sucrose gradients. The concatemers serve as precursors for the formation of mature T7 DNA as demonstrated in pulse-chase experiments. In similar studies carried out with gene 2-infected cells, concatemers are not detected when the intracellular DNA is analyzed at several different times during the infection process. The DNA made during a gene 2 infection is present as duplex structures with a sedimentation rate close to mature T7 DNA.  相似文献   

13.
Bacteriophage T4-infected Escherichia coli rendered permeable to nucleotides by sucrose plasmolysis exhibited two apparently separate pathways or channels to T4 DNA with respect to the utilization of exogenously supplied substrates. By one pathway, individual labeled ribonucleotides, thymidine (tdR), and 5-hydroxymethyl-dCMP could be incorporated into phage DNA. Incorporation of each of these labeled compounds was not dependent upon the addition of the other deoxyribonucleotide precursors, suggesting that a functioning de novo pathway to deoxyribonucleotides was being monitored. The second pathway or reaction required all four deoxyribonucleoside triphosphates or the deoxyribonucleoside monophosphates together with ATP. However, in this reaction, dTTP was not replaced by TdR. The two pathways were also distinguished on the basis of their apparent Mg2+ requirements and responses to N-ethylmaleimide, micrococcal nuclease, and to hydroxyurea, which is a specific inhibitor of ribonucleoside diphosphate reductase. Separate products were synthesized by the two channels, as shown by density-gradient experiments and velocity sedimentation analysis. Each of the pathways required the products of the T4 DNA synthesis genes. Furthermore, DNA synthesis by each pathway appeared to be coupled to the functioning of several of the phage-induced enzymes involved in deoxyribonucleotide biosynthesis. Both systems represent replicative phage DNA synthesis as determined by CsCl density-gradient analysis. Autoradiographic and other studies provided evidence that both pathways occur in the same cell. Further studies were carried out on the direct role of dCMP hydroxymethylase in T4 DNA replication. Temperature-shift experiments in plasmolyzed cells using a temperature-sensitive mutant furnished strong evidence that this gene product is necessary in DNA replication and is not functioning by allowing preinitiation of DNA before plasmolysis.  相似文献   

14.
Bacteriophage T4 DNA replication initiates from origins at early times of infection and from recombinational intermediates as the infection progresses. Plasmids containing cloned T4 origins replicate during T4 infection, providing a model system for studying origin-dependent replication. In addition, recombination-dependent replication can be analyzed by using cloned nonorigin fragments of T4 DNA, which direct plasmid replication that requires phage-encoded recombination proteins. We have tested in vivo requirements for both plasmid replication model systems by infecting plasmid-containing cells with mutant phage. Replication of origin and nonorigin plasmids strictly required components of the T4 DNA polymerase holoenzyme complex. Recombination-dependent plasmid replication also strictly required the T4 single-stranded DNA-binding protein (gene product 32 [gp32]), and replication of origin-containing plasmids was greatly reduced by 32 amber mutations. gp32 is therefore important in both modes of replication. An amber mutation in gene 41, which encodes the replicative helicase of T4, reduced but did not eliminate both recombination- and origin-dependent plasmid replication. Therefore, gp41 may normally be utilized for replication of both plasmids but is apparently not required for either. An amber mutation in gene 61, which encodes the T4 RNA primase, did not eliminate either recombination- or origin-dependent plasmid replication. However, plasmid replication was severely delayed by the 61 amber mutation, suggesting that the protein may normally play an important, though nonessential, role in replication. We deleted gene 61 from the T4 genome to test whether the observed replication was due to residual gp61 in the amber mutant infection. The replication phenotype of the deletion mutant was identical to that of the amber mutant. Therefore, gp61 is not required for in vivo T4 replication. Furthermore, the deletion mutant is viable, demonstrating that the gp61 primase is not an essential T4 protein.  相似文献   

15.
J. D. Karam  M. Leach    L. J. Heere 《Genetics》1979,91(2):177-189
T4 phage completely defective in both gene 30 (DNA ligase) and the rII gene (function unknown) require at least normal levels of host-derived DNA ligase (E. coli lig gene) for growth. Viable E. coli mutant strains that harbor less than 5% of the wild-type level of bacterial ligase do not support growth of T4 doubly defective in genes 30 and rII (T4 30- rII- mutants). We describe here two classes of secondary phage mutations that permit the growth of T4 30- rII- phage on ligase-defective hosts. One class mapped in T4 gene su30 (Krylov 1972) and improved T4 30- rII- phage growth on all E. coli strains, but to varying degrees that depended on levels of residual host ligase. Another class mapped in T4 gene 32 (helix-destabilizing protein) and improved growth specifically on a host carrying the lig2 mutation, but not on a host carrying another lig- lesion (lig4). Two conclusions are drawn from the work: (1) the role of DNA ligase in essential DNA metabolic processes in T4-infected E. coli is catalytic rather than stoichiometric, and (2) the E. coli DNA ligase is capable of specific functional interactions with components of the T4 DNA replication and/or repair apparatus.  相似文献   

16.
Summary An Escherichia coli mutant defective in replication of the chromosome has been isolated from temperature-sensitive mutants that cannot support colicin E1 plasmid DNA synthesis in the presence of chloramphenicol. Cellular DNA synthesis of the mutant ceases almost immediately after transfer to the nonpermissive temperature. The defect is due to a single mutation, dna-59, which is located close to the sites of dnaA mutations and a cou R mutation conferring DNA gyrase with resistance to coumermycin. The dna-59 mutant is not able to support DNA synthesis of phage at the high temperature. The mutant also restricts growth of X174 phage at the high temperature, but permits formation of supercoiled closedcircular duplex replicative intermediates. T7 phage can grow on the mutant even at the high temperature.A specialized transducing phage imm 21[tna dnaA]#2 (Miki et al., 1978) supports growth of dna-59, dnaA46 and dna-167 cells at the high temperature. Some of the EDTA-resistant derivatives of the phage have lost part or all of the dnaA gene, but carry gene function complementing the defect of dna-59 cells, as judged by conversion of the above dna strains to wild type cells by phage infection, and by suppression of the loss of viability of dna-59 cells at the high temperature by phage infection. The gene containing the dna-59 mutation site is thus distinct from the dnaA gene. Since the dna-59 mutation does not affect expression of the cou r gene of DNA gyrase, which is another known gene involved in DNA synthesis near the dnaA gene, this mutation is probably in a new gene, dnaN. From analysis of the suppression activities of imm 21[tna dnaA]#2 phage and its deletion derivatives against dnaN59 cells, it is suggested that the expression of the dnaN gene function is reduced by deletion in the dnaA region.  相似文献   

17.
The lytic bacteriophage T4 uses multiple mechanisms to initiate the replication of its DNA. Initiation occurs predominantly at replication origins at early times of infection, but there is a switch to genetic recombination-dependent initiation at late times of infection. The T4 insertion-substitution system was used to create a deletion in the T4 dda gene, which encodes a 5'-3' DNA helicase that stimulates both DNA replication and recombination reactions in vitro. The deletion caused a delay in T4 DNA synthesis at early times of infection, suggesting that the Dda protein is involved in the initiation of origin-dependent DNA synthesis. However, DNA synthesis eventually reached nearly wild-type levels, and the final number of phages produced per bacterium was similar to that of the wild type. When the dda mutant phage also contained a mutation in T4 gene 59 (a gene normally required only for recombination-dependent DNA replication), essentially no DNA was synthesized. Recent in vitro studies have shown that the gene 59 protein loads a component of the primosome, the T4 gene 41 DNA helicase, onto DNA. A molecular model for replication initiation is presented that is based on our genetic data.  相似文献   

18.
Summary The allelic forms of the phage genes T4x and fdsA, as well as T4y and fdsB are compared in terms of their thymidine incorporation in high or low concentrations of thymidine, sensitivity of DNA synthetic capacity to mitomycin C, and sedimentation rates of DNA replicative intermediates. The results show differences among these mutants for the incorporation of thymidine; however all exhibit mitomycin C-sensitive DNA synthesis and have identical aberrant sedimentation rates for their DNA replicative intermediates.  相似文献   

19.
T. Yonesaki 《Genetics》1994,138(2):247-252
Bacteriophage T4 gene 41 encodes a replicative DNA helicase that is a subunit of the primosome which is essential for lagging-strand DNA synthesis. A mutation, rrh, was generated and selected in the helicase gene on the basis of limited DNA replication that ceases early. The survival of ultraviolet-irradiated phage and the frequency of genetic recombination are reduced by rrh. In addition, rrh diminishes the production of concatemeric DNA. These results strongly suggest that the gene 41 replicative helicase participates in DNA recombination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号