首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The initiation of sporulation in Bacillus subtilis results primarily from phosphoryl group input into the phosphorelay by histidine kinases, the major kinase being kinase A. Kinase A is active as a homodimer, the protomer of which consists of an approximately 400-amino-acid N-terminal putative signal-sensing region and a 200-amino-acid C-terminal autokinase. On the basis of sequence similarity, the N-terminal region may be subdivided into three PAS domains: A, B, and C, located from the N- to the C-terminal end. Proteolysis experiments and two-hybrid analyses indicated that dimerization of the N-terminal region is accomplished through the PAS-B/PAS-C region of the molecule, whereas the most amino-proximal PAS-A domain is not dimerized. N-terminal deletions generated with maltose binding fusion proteins showed that an intact PAS-A domain is very important for enzymatic activity. Amino acid substitution mutations in PAS-A as well as PAS-C affected the in vivo activity of kinase A, suggesting that both PAS domains are required for signal sensing. The C-terminal autokinase, when produced without the N-terminal region, was a dimer, probably because of the dimerization required for formation of the four-helix-bundle phosphotransferase domain. The truncated autokinase was virtually inactive in autophosphorylation with ATP, whereas phosphorylation of the histidine of the phosphotransfer domain by back reactions from Spo0F~P appeared normal. The phosphorylated autokinase lost the ability to transfer its phosphoryl group to ADP, however. The N-terminal region appears to be essential both for signal sensing and for maintaining the correct conformation of the autokinase component domains.  相似文献   

4.
To explore the functional mechanism of inter-domain interaction in a sensor histidine kinase, five chimeric sensory kinases were constructed. In each of these chimeric proteins (CskA254, CskA264, CskA274, CskA284, and CskA294), the sensor domain of heme-based O(2) sensor FixL, obtained from Sinorhizobium meliloti, was fused with the histidine kinase domain from a hyperthermophile, Thermotoga maritima, each at a systematically different position. The UV-visible (UV-vis), resonance Raman (RR), and circular dichroism (CD) spectral characteristics of the CskAs indicated that the secondary and heme environmental structures of all five CskAs examined are identical to those of FixL. In spite of these structural similarities, all CskAs did not exhibit O(2)-dependent regulation of autophosphorylation activity. Furthermore, their functional properties were much different from those of FixL: The O(2) binding affinity and the autophosphorylation activity for CskA254, CskA264, and CskA274 were similar to those of the truncated sensor and histidine kinase domain, whereas CskA284 and CskA294 display extremely low O(2) affinity and low autophosphorylation activity, as compared with each truncated domain. These observations indicated that the interdomain interaction was presented in those CskAs, and that interaction could be related to the O(2)-dependent regulatory interaction of FixL. In the present study, we demonstrated that the interaction in the physiological sensor histidine kinase would be strictly and finely controlled to mediate the signal ligation-dependent autophosphorylation activity in its histidine kinase domain.  相似文献   

5.
6.
Mukai M  Nakamura K  Nakamura H  Iizuka T  Shiro Y 《Biochemistry》2000,39(45):13810-13816
FixL is a sensor histidine kinase having a heme-containing domain as an O(2) sensing site. In the study presented here, Ile209 and Ile210 located near the heme iron of the heme domain of Rhizobium meliloti FixL (RmFixL) were mutated, and the mutational effects on the regulation of the kinase activity and the heme pocket structure were examined by the autophosphorylation assay and UV-visible absorption and resonance Raman (RR) spectroscopies. The mutation of these residues disrupted the regulation of the kinase activity by the sensor (heme) domain, indicating that Ile209 and Ile210 play important roles in the signal transduction between the heme and the kinase domains. By measurement of the resonance Raman and optical absorption spectra of Ile209 and Ile210 mutants in several oxidation, spin, and ligation states, it was found that both residues are highly flexible, and their side chains sterically interact with the O(2) ligand, when it binds to the heme iron. On the basis of the results, we propose an O(2) sensing mechanism of RmFixL; the kinase activity is regulated via conformational changes of Ile209 and Ile210 induced by the O(2) binding to the sensory center.  相似文献   

7.
BACKGROUND: Two-component signal transduction pathways are sophisticated phosphorelay cascades widespread in prokaryotes and also found in fungi, molds and plants. FixL/FixJ is a prototypical system responsible for the regulation of nitrogen fixation in the symbiotic bacterium Sinorhizobium meliloti. In microaerobic conditions the membrane-bound kinase FixL uses ATP to transphosphorylate a histidine residue, and the response regulator FixJ transfers the phosphoryl group from the phosphohistidine to one of its own aspartate residues in a Mg(2+)-dependent mechanism. RESULTS: Seven X-ray structures of the unphosphorylated N-terminal receiver domain of FixJ (FixJN) have been solved from two crystal forms soaked in different conditions. Three conformations of the protein were found. In the first case, the protein fold impairs metal binding in the active site and the structure reveals a receiver domain that is self-inhibited for catalysis. In the second conformation, the canonical geometry of the active site is attained, and subsequent metal binding to the protein induces minimal conformational changes. The third conformation illustrates a non-catalytic form of the protein where unwinding of the N terminus of helix alpha 1 has occurred. Interconversion of the canonical and self-inhibited conformations requires a large conformational change of the beta 3-alpha 3 loop region. CONCLUSIONS: These unphosphorylated structures of FixJN stress the importance of flexible peptide segments that delineate the active site. Their movements may act as molecular switches that define the functional status of the protein. Such observations are in line with structural and biochemical results obtained on other response regulator proteins and may illustrate general features that account for the specificity of protein-protein interactions.  相似文献   

8.
9.
The PAS domain is a versatile protein fold found in many archaeal, bacterial, and plant proteins capable of sensing environmental changes in light intensity, oxygen concentration, and redox potentials. The oxygen sensor FixL from Rhizobium species contains a heme-bearing PAS domain and a histidine kinase domain that couples sensing to signaling. We identified a novel mammalian PAS protein (PASKIN) containing a domain architecture resembling FixL. PASKIN is encoded by an evolutionarily conserved single-copy gene which is ubiquitously expressed. The human PASKIN and mouse Paskin genes show a conserved intron-exon structure and share their promoter regions with another ubiquitously expressed gene that encodes a regulator of protein phosphatase-1. The 144-kDa PASKIN protein contains a PAS region homologous to the FixL PAS domain and a serine/threonine kinase domain which might be involved in signaling. Thus, PASKIN is likely to function as a mammalian PAS sensor protein.  相似文献   

10.
11.
12.
13.
Key J  Moffat K 《Biochemistry》2005,44(12):4627-4635
Rhizobia directly regulate the expression of genes required for symbiotic nitrogen fixation in response to oxygen concentration via the sensor protein FixL. The N-terminal PAS domain of FixL contains a histidine-coordinated heme and regulates the activity of its effector domain, a C-terminal histidine kinase, in response to binding of oxygen and other ligands at the heme. To further investigate ligand-induced inhibition of FixL, we have determined the crystal structures of the heme domain in both the deoxy state and bound to carbon monoxide, a weak inhibitor of FixL kinase activity. Structures collected at room temperature are presented in each state from two crystallographic space groups at 1.8 and 2 A resolution. These structures reveal displacement of the residues of the H(beta) and I(beta) strands by Leu236 upon CO binding, and this structural change propagates more than 15 A to a region of the structure implicated in signal transduction in PAS proteins. Displacement of residues Ile215, Ile216, and Gly217 in the FG loop is also evident, accompanied by the movement of heme propionate 6 upon change in iron ligation. CO binding increases the temperature factors in the FG loop of the protein and disorders the side chain of Arg206, a conserved residue involved in the FG loop switch mechanism. We relate these results to structural changes in other PAS sensor domains and their involvement in catalytic control.  相似文献   

14.
Bacteria employ two-component signaling to detect and respond to environmental stimuli. In essence, two-component signaling relies on a protein called a response regulator that can elicit a change in gene expression or protein function in response to phosphoryl transfer from a histidine kinase. Phosphorylation of the associated histidine kinase is regulated by detection of an environmental signal, thus linking sensing to cellular response. Recently, it has been suggested that H-NOX (Heme-nitric oxide/oxygen binding) proteins may act as nitric oxide (NO) sensors in two-component signaling systems. NO/H-NOX regulated histidine kinases have been reported, but their cognate response regulators have yet to be identified. In this work we provide biochemical characterization of a complete NO/H-NOX-regulated two-component signaling pathway in the biofilm-dwelling marine bacterium, Pseudoalteromonas atlantica. In P. atlantica, as is typical for bacteria that code for H-NOX, an hnoX gene is found in the same operon as a gene coding for a two-component signaling histidine kinase (H-NOX-associated histidine kinase; HahK). We find that HahK is capable of autophosphorylation in vitro and that NO-bound H-NOX inhibits HahK activity, implicating H-NOX as a selective NO sensor. The cognate response regulator, a protein annotated as a cyclic-di-GMP processing enzyme that we have named HarR (H-NOX-associated response regulator), was identified using bioinformatics tools. Phosphoryl transfer from HahK to HarR has been established. This report reveals the first biochemical characterization of an H-NOX-associated response regulator and contributes to a deeper understanding of NO/H-NOX signaling in bacteria.  相似文献   

15.
16.
Gong W  Hao B  Chan MK 《Biochemistry》2000,39(14):3955-3962
The FixL heme domain serves as the dioxygen switch in the FixL/FixJ two-component system of Rhizobia. Recent structural studies of the Bradyrhizobium japonicum FixL heme domain (BjFixLH) have suggested an allosteric mechanism that is distinct from the classical hemoglobin model. To gain further insight into the FixL sensing mechanism, structures of BjFixLH bound to dioxygen, imidazole, and nitric oxide have been determined. These structures, particularly the structure of BjFixLH bound to its physiological ligand, dioxygen, have helped to address a number of important issues relevant to the BjFixLH sensing mechanism. On the basis of the oxy-BjFixLH structure, a conserved arginine is found to stabilize the dioxygen ligand in a mode reminiscent of the distal histidine in classical myoglobins and hemoglobins. The structure of BjFixLH bound to imidazole elucidates the structural requirements for accommodating sterically bulky ligands. Finally, the structure of BjFixLH bound to nitric oxide provides evidence for a structural intermediate in the heme-driven conformational change.  相似文献   

17.
18.
19.
This report presents a spectroscopic investigation of the nitrosyl adducts of FixL, the sensor in the signal transduction system responsible for regulating nitrogen fixation in Rhizobium meliloti. Variable-temperature resonance Raman (RR), electron spin resonance (ESR), and variable-temperature UV-visible absorption data are presented for the ferrous NO adducts of two FixL deletion derivatives, FixLN (the heme-containing domain) and FixL* (a functional heme-kinase). A temperature-dependent equilibrium is observed between the five-coordinate (5-c) and six-coordinate (6-c) ferrous nitrosyl adducts, with lower temperatures favoring formation of the 6-c nitrosyl adduct. This equilibrium is perturbed as the solution freezes, and the amount of 5-c FixL-NO increases sharply until a nearly constant ratio of 6-c to 5-c adducts is obtained. Complexation between the heme domain of FixL and its response regulator, FixJ, is revealed through specfic FixJ-induced increase in the energy separation between 5-c and 6-c FixL-NO. Ferric nitrosyl adducts of FixL* and FixLN autoreduce to their corresponding ferrous nitrosyl adducts. The kinetic behavior of this reduction is monophasic for FixL*-NO, while the reaction for ferric FixLN-NO is biphasic. These results suggest conformational inhomogeneity in the heme pocket of FixLN and conformational homogeneity in that of FixL*. Hence the kinase domain plays a role in distal pocket conformational stability. Implications for the signal transduction mechanism are discussed.  相似文献   

20.
A direct sensor of O(2), the Dos protein, has been found in Escherichia coli. Previously, the only biological sensors known to respond to O(2) by direct and reversible binding were the FixL proteins of Rhizobia. A heme-binding region in Dos is 60% homologous to the O(2)-sensing PAS domain of the FixL protein, but the remainder of Dos does not resemble FixL. Specifically, the C-terminal domain of Dos, presumed to be a regulatory partner that couples to its heme-binding domain, is not a histidine kinase but more closely resembles a phosphodiesterase. The absorption spectra of Dos indicate that both axial positions of the heme iron are coordinated to side chains of the protein. Nevertheless, O(2) and CO bind to Dos with K(d) values of 13 and 10 microM, respectively, indicating a strong discrimination against CO binding. Association rate constants for binding of O(2) (3 mM(-)(1) s(-)(1)), CO (1 mM(-)(1) s(-)(1)) and even NO (2 mM(-)(1) s(-)(1)) are extraordinarily low and very similar. Displacement of an endogenous ligand, probably Met 95, from the heme iron in Dos triggers a conformational change that alters the activity of the enzymatic domain. This sensing mechanism differs from that of FixL but resembles that of the CO sensor CooA of Rhodospirillum rubrum. Overall the results provide evidence for a heme-binding subgroup of PAS-domain proteins whose working range, signaling mechanisms, and regulatory partners can vary considerably.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号