首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
The effect of diabetes on trace elements concentration in blood of experimental animals has been studied by thin-target X-ray fluorescence analysis. Balb/C young adult mice, 6–8 wk old, were used in the study. About 100–200 μL venous blood was taken from each mouse for trace element analysis. The measurements were carried out on a commercial Wave-Length-Dispersive XRF System, with different X-ray tubes being used for maximizing the detection sensitivity of different groups of elements. Later on, the mice were made diabetic by an intravenous injection of Streptozotocin (250 mg/kg). Then, 2 and 3 wk after the injection, 100 μL of venous blood was drawn from each of the mice and analyzed for trace element concentration. In this way we were able to study the changes in blood trace elements caused by diabetes. The results and advantages of using experimental animals, under controlled conditions, to study trace element variations caused by different diseases, are discussed in the paper.  相似文献   

2.
The influence of hair color on the trace elemental status in horse's hair has been studied. A current analytical technique such as particle-induced X-ray emission (PIXE) used in this study has provided reliable, rapid, easy, and relatively inexpensive diagnostic methods. Twenty-eight elements (Al, Br, Ca, Cl, Co, Cu, Cr, Fe, Ga, Hg, K, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, S, Se, Si, Sr, Ti, V, Y, and Zn) in mane hair were detected by the PIXE method. The gray hair contains significantly greter amounts of Cu, Ti, and Zn, and lower amounts of Br, Ca, Se, and Sr than those in other colored horse hairs (p<0.05). Those results measured in the horse's hair were similar to those found in human and dog hair. When interpreting a result, it should be kept in mind that hair color, especially gray hair, influences the concentrations of some elements in horse hair.  相似文献   

3.
BackgroundNovel and emerging biomarkers of zinc status are being developed to help study and address zinc deficiency around the world. Two potential biomarkers, nail and hair, involve the measurement of zinc from easily accessible keratin-based components of the body. Portable X-ray fluorescence (XRF) is a relatively new approach to the assessment of zinc in nail or hair, and has a number of compelling advantages compared with other techniques. The aim of the current study was to test the ability of XRF to measure zinc in keratinized reference materials (RMs) designed to simulate nail and hair.MethodsFour Keratin Matrix RMs were prepared and characterized for numerous trace elements by the New York State Department of Health’s Wadsworth Center. The Keratin Matrix RMs consisted of powdered samples of caprine (goat) horns pooled from several animals. Concentrations of zinc, as assessed by inductively coupled plasma mass spectrometry (ICP-MS), were similar to what would be expected from human nail or hair tissues. Repeat measurements of the RMs were made using a portable XRF system. The XRF zinc results were compared with the ICP-MS zinc concentrations. Three different approaches to quantifying the zinc content by XRF were performed: (1) zinc signal to total signal ratio, (2) zinc signal to sulfur signal ratio, and (3) system output zinc concentration.ResultsThe portable XRF results from a given RM were found to be consistent across repeat trials under all three approaches to XRF quantitation. Precision, calculated as the relative standard deviation of repeat measurements ranged from an average result of 0.8 % (using the system output zinc concentration method) to 6.1 % (using the zinc signal to sulfur signal ratio method). Measurement of the RMs provided XRF zinc results which scaled well with ICP-MS zinc concentration, particularly when using the XRF zinc to total and system zinc concentration methods. A Bland-Altman plot showed that the XRF system zinc concentration output exceeded the ICP-MS zinc concentration by, on average, 10.2 % ± 1.2 %.ConclusionOverall, both accuracy and precision of measurement were found to be promising for portable XRF, provided appropriate conversions to concentration are introduced. The results of this study indicate that portable XRF is an effective and dependable method of assessing zinc concentration in keratinized tissue RMs. This will have implications for the future use of portable XRF to monitor zinc status in humans through measurements of nail and hair.  相似文献   

4.
In this investigation, the concentration levels of hair elements of calcium, iron, and zinc were measured in pregnant women from Tianjin metropolis, China. The subjects were 93 cases of pregnant women who had been suffering from calcium, iron, or zinc deficiency judged by blood tests at the mid-term of the second trimester or early in the third trimester. Of these 93 cases, 82 subjects had their hair element levels measured when the blood tests were conducted. Then, they were supplied with mineral element nutrients of gluconic acidic zinc (noted as Zn-nutrient), gluconic acidic calcium (Ca-nutrient), or/and ferrous sulfate (Fe-nutrient) which were correspondent to the deficient element(s) for more than 2 mo before 84 subjects returned to hospital for further diagnoses and had their hair element levels measured for the second time. Finally, in the third trimester or nearparturient phase, 13 subjects had their hair element levels measured again. Except for the deficiencies of calcium, iron, or/and zinc, these subjects were all healthy without symptoms of any diseases. The concentrations of hair Ca, Fe, and Zn were measured by X-ray fluorescence (XRF) spectrometry. These concentrations of the three hair elements measured at three different times were statistically analyzed. From the analyses, it was clear that hair concentrations of Ca, Fe, and Zn could reflect the effects of supplementation. Also, the mutual resistant effects among Ca-, Fe-, and Zn-nutrients were revealed. However, by appropriate combination, the mutual resistant effects could be depressed and mutual promotional effects might be enhanced. Finally, it could be concluded that mineral element deficiencies might be convalesced by adequate compensations of mineral element nutrients.  相似文献   

5.
Zhuang  G. S.  Wang  Y. S.  Tan  M. G.  Zhi  M.  Pan  W. Q.  Cheng  Y. D. 《Biological trace element research》1990,26(1):729-736

In order to study the relationships between trace element concentrations of hair and internal body burdens, a radiochemical NAA technique has been used for determination of the elements As, Cd, and Hg in autopsy samples of liver, kidney-cortex, lung, and hair from 24 male persons who died by accident. High significant positive correlations were observed between the As concentration in hair and in kidney-cortex, and between Cd and Zn concentrations in kidney-cortex. The contents of Cd, both for lung and kidney-cortex, were related to the smoking habits of the subjects.

  相似文献   

6.
Concentrations of the elements Ca, Sr, Mg, Zn and Cu were determined in excavated hair specimens and adherent, most probably soil remains from two sites in Germany. Though soil contamination obviously has occurred, the two groups could be distinguished by differential trace element contents in the hair samples. The trace element concentrations might be interpreted in terms of nutritional intake, the results being corroborated by preceding bone analyses and the different local and social settings. Hair decomposition is discussed.  相似文献   

7.
Determination of Rb, Br, Se, Zn, Cu, Fe, and Br/Rb ratio in tissues of mice inoculated with colon and melanoma cancer cells is described. A group of 19 Balb/c mice inoculated with C26 colon carcinoma, 4 C57B1/6 mice inoculated with B16 melanoma, and 13 control mice of both kinds were under investigation. The study was conducted on samples of blood, liver, kidneys, colon, and skin, and the trace element levels in normal and inoculated mice were compared. The inoculation was by subcutaneous injection either at the back or intrafootpad. The blood samples were taken 1, 2, and 3 wk after inoculation, and after 4 wk all the animals were sacrificed. Two nondestructive, complementary analytical methods were used: a modified X-ray fluorescence (XRF) for solid tissue and particleinduced X-ray emission (PIXE) for blood samples. The detection limit (DL) in the PIXE method was 0.35 (μg/g dry wt in 600 s counting time and in XRF, 1 μg/g dry sample for Rb, Br, Se and Zn and 2 μg/g for Cu and Fe in 200 s counting time. In all the cases studied, cancerous tissue developed at the site of the injection, and a significant difference in the trace element levels was observed between tissue samples obtained from normal and inoculated mice. The most pronounced effect was an increase in Rb level in the tumor by a factor ranging between 4 and 10 relative to normal tissue, with a corresponding decrease in the Br/Rb ratio (p < 0.05). Smaller changes were found in the Br, Se, Zn, and K levels. The changes in trace element levels in the inner organs were much smaller and seem to be influenced by the site of injection.  相似文献   

8.
Zinc is an essential trace element in humans. Zinc deficiency can result in a range of serious medical conditions which include effects on growth and development, the immune system, the central nervous system, and the gastrointestinal system. Diagnosis of zinc deficiency is often precluded by the lack of a noninvasive and reliable biomarker. Zinc concentration in nail is considered an emerging biomarker of zinc status in humans. Whether zinc in nail accurately reflects zinc status is beyond the scope of the current study, but is an important research question. The development of a portable method to quickly assess zinc concentration from a single nail clipping could be a useful advance. In this study, single toenail clippings from 60 individuals living in Atlantic Canada were measured for zinc using a portable X-ray fluorescence (XRF) technique. These samples were obtained from the Atlantic PATH cohort, part of the largest chronic disease study ever performed in Canada. Each toenail clipping was measured using three 300 s trials with a mono-energetic portable XRF system. Results were then assessed using two different approaches to the XRF analysis: (1) factory-calibrated zinc concentrations were output from each trial, and (2) energy spectra were analyzed for the characteristic X-rays resulting from zinc. Following the measurement of zinc using the non-destructive portable XRF method, the same clippings were measured for zinc concentration using the “gold standard” technique of inductively coupled plasma-mass spectrometry (ICP-MS). A linear equation of best fit was determined for the relationship between average XRF output zinc concentration and ICP-MS zinc concentration, with a correlation coefficient r = 0.60. Similarly, a linear equation of best fit was found for the relationship between a normalized XRF energy spectrum zinc signal and ICP-MS zinc concentration, with a correlation coefficient r = 0.68. Individual ICP-MS zinc concentrations ranged from 32 μg/g to 140 μg/g, with a population average of 85 μg/g. The results of this study indicate that portable XRF is a sensitive method for the measurement of zinc in a single nail clipping, and provides a reasonable estimation of zinc concentration. Further method development is required before portable XRF be considered a routine alternative to ICP-MS for the assessment of zinc in nail clippings.  相似文献   

9.
Trace element disturbance is often observed in hemodialysis patients. While trace element concentrations have been reported in blood samples from hemodialysis patients, they have not been well investigated in scalp hair. In the present study, 22 trace elemental concentrations were measured by inductively coupled plasma-atomic emission spectrometry in the scalp hair of 80 male hemodialysis patients and compared with those of 100 healthy male subjects. In hemodialysis patients, the concentrations of beryllium, arsenic, magnesium, chromium, manganese, iron, selenium, molybdenum, iodine, vanadium, and cobalt were significantly higher than those in healthy subjects, while lead, mercury, copper, germanium, and bromine were significantly lower than those in the former group. No significant differences were observed for lithium, aluminum, cadmium, zinc, boron, or nickel. There were significant positive correlations between the duration of hemodialysis and the magnesium and manganese concentrations. There was a significant negative correlation between cadmium concentration and the duration of hemodialysis. There were significant positive correlations between dialysis efficacy (Kt/V) and magnesium, manganese, zinc, and selenium concentrations. In conclusion, trace element concentrations of the scalp hair are different between hemodialysis patients and healthy subjects. Essential trace elements, such as magnesium, manganese, zinc, and selenium, may be affected by the duration of hemodialysis and Kt/V.  相似文献   

10.
Trace element content in hair is affected by the age of the donor. Hair samples of subjects from four counties in China where people are known to have long lifespan (“longevity counties”) were collected and the trace element content determined. Samples were subdivided into three age groups based on the age of the donors from whom these were taken: children (0–15 years); elderly (80–99 years); and centenarians (≥100 years). We compared the trace element content in hair of different age groups of subjects. Support vector machine classification results showed that a non-linear polynomial kernel function could be used to classify the three age groups of people. Age did not have a significant effect on the content of Ca and Cd in human hair. The content of Li, Mg, Mn, Zn, Cr, Cu, and Ni in human hair changed significantly with age. The magnitude of the age effect on trace element content in hair was in the order Cu > Zn > Ni > Mg > Mn > Cr > Li. Cu content in hair decreased significantly with increasing age. The hair of centenarians had higher levels of Li and Mn, and lower levels of Cr, Cu, and Ni comparing with that of the children and elderly subjects. This could be a beneficial factor of their long lifespan.  相似文献   

11.
This study explores the possibility of using X-ray fluorescence (XRF)-based trace-element analysis for differentiation of various bovine neck tissues. It is motivated by the requirement for an intra-operative in-vivo method for identifying parathyroid glands, particularly beneficial in surgery in the central neck-compartment. Using a dedicated X-ray spectral analysis, we examined ex-vivo XRF spectra from various histologically verified fresh neck tissues from cow, which was chosen as the animal model; these tissues included fat, muscle, thyroid, parathyroid, lymph nodes, thymus and salivary gland. The data for six trace elements K, Fe, Zn, Br, Rb and I, provided the basis for tissue identification by using multi-parameter analysis of the recorded XRF spectra. It is shown that the combination of XRF signals from these elements is sufficient for a reliable tissue differentiation. The average total abundance of these trace elements was evaluated in each tissue type, including parathyroid and salivary gland for the first time. It is shown that some tissues can unequivocally be identified on the basis of the abundance of a single element, for example, iodine and zinc for the identification of thyroid gland and muscle, respectively.  相似文献   

12.
本文报告了用PIXE (Prolon Induced X-Ray Emission)技术研究不同健康状况大熊猫体毛中的微量元素含量,分别比较了各类样本中微量元素含量相对于各自锌含量的比值。不同健康状况的大熊猫体毛中的微量元素含量不同。血色素低与铁有关,食欲差与缺铬有关,癫痫病与钙和铜含量变化有关,癌症与铜和锌的比值变化有关。这些现象的初步揭示,为进一步研究高等功物体内微量元素与疾病的关系积累了资料,为人工饲养大熊猫提供了有益的参考资料。  相似文献   

13.
External beam PIXE (Particle Induced X-ray Emission) analysis with a proton beam of 2.4 MeV was used to study trace element concentrations in human nails. The suitability of PIXE analysis regarding nail samples without any pretreatment besides washing was investigated. The main emphasis has been on the ability to obtain absolute concentration values and a new accurate method for nail sample standardization has been developed. Concentration values for the elements Ca, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, and Pb were determined from human nail samples. A comparison was made with nail samples taken from different fingers and toes to monitor intraindividual variation, and nails of different healthy individuals to get a view of the interindividual differences. The concentrations were also measured in relation to time in order to observe any possible short-term changes. The results are compared with the previous studies reported in the literature. The nail analysis is also compared to hair analysis in terms of detection limits, number of elements determinable, and standardization of the results.  相似文献   

14.
The concentrations of 17 elements in the nail and hair of 117 subjects from a nonindustrialized environment were determined by instrumental neutron activation analysis (INAA). A new method of statistical treatment that allows for more meaningful use of detection limit values was used to process the concentration data. Geometric means and standard errors are presented for each element, along with a summary of the effects of age, sex, and treatment on the concentration of each element. For nails, these data represent the first comprehensive study for several important elements. Correlations for each element between hair and nail were determined. With few exceptions, concentrations of nonessential trace elements were positively correlated in hair and nail, whereas concentrations of essential elements showed no correlations. The factors affecting concentrations and control levels must be considered in studying alterations in disease states.  相似文献   

15.
Head hair concentrations of zinc, copper, manganese, and iron from a total of 418 subjects (154 male and 264 female) aged between 6 mo and 20 yr were measured mainly with flameless atomic absorption spectrophotometry. Only zinc analysis of a part of the female samples (n=140) were analyzed with inductively coupled plasma-atomic emission spectrometry. The two analytical methods showed close agreement. The mean concentration of copper and manganese were significantly higher in male subjects than in female subjects. The trace element concentrations in hair varied with the subject’s age. Zinc concentration in hair decreased from 6 mo to 14 yr in the male subjects and decreased from 6 mo to 12 yr in the female subjects. Then, the concentrations increased gradually to 20 yr in the both sexes. Age-dependent variations of copper and manganese concentrations in hair showed similar trends to those of zinc. The results of this study suggest that a higher concentration in the diet of these trace elements may be required for growing children, especially in the period of adolescence.  相似文献   

16.
Selenium and other trace elements (Cu, Zn, Br, and Rb) were determined in very small (0.75 μL) human serum and mice whole blood samples, by an XRF method. Accurate results of elemental concentration were obtained without the need of exact volume measurement, because of the backscatter correction used. The XRF method is highly sensitive (M.D.L.=0.06, 0.13, 0.09, 0.07, and 0.05 ppm for Se, Cu, Zn, Br, and Rb, respectively), rapid (counting time—100 s/sample), easy to perform and therefore suitable for routine trace element analyses. The results obtained are in good agreement with the values reported in the literature.  相似文献   

17.
Trace element analysis of human hair has the potential to reveal retrospective information about an individual's nutritional status and exposure. As trace elements are incorporated into the hair during the growth process, longitudinal segments of the hair may reflect the body burden during the growth period. We have evaluated the potential of human hair to indicate exposure or nutritional status over time by analysing trace element profiles in single strands of human hair. The hair strands from five healthy and occupationally unexposed subjects were cut into 1-cm long segments starting from the scalp. By using high-resolution inductively coupled plasma mass spectrometry (HR-ICP-MS), we achieved profiles of 12 elements in single strands of human hair, namely, Ag, As, Au, Cd, Cu, Hg, Fe, Pb, Se, Sr, U and Zn. We have shown that trace element analysis along single strands of human hair can yield information about essential and toxic elements, and for some elements, can be correlated with seasonal changes in diet and exposure. The information obtained from the trace element profiles of human hair in this study substantiates the potential of hair as a biomarker.  相似文献   

18.
Pituitary dwarfism (hGHD) is known to be associated with trace element deficiency, which causes improper functioning of the involved endocrine system. Previously, we reported on the head hair concentrations of zinc, copper, manganese, and iron from a total of 418 normal subjects (154 male and 264 female). In this report, we analyzed the head hair concentrations of the same four trace metals of 103 hGHD children (60 male and 43 female) under treatment with human growth hormone (hGH). These subjects ranged in age from 5 to 18 yr. The results were compared with 338 agematched normal subjects (120 male and 218 female). Both male and female hGHD showed approx 1.7 times higher zinc concentrations than normal subjects. Cheruvanky et al. reported a similar trend but with a slightly lower difference between hGHD and normal subjects. The average copper content in the hair of both male and female subjects also showed higher values for the hGHD than for the normal subjects, a trend similar to the values reported by Teraoka et al. In the case of manganese, the concentrations in hair of the hGHD were approx 50% of the values in the normal subjects. Head hair concentrations of iron in the hGHD were commensurate with the normal subjects. Because the content of trace elements in hair varies with the age of subjects, as a control, we investigated the head hair concentration of zinc from 20 healthy girls ranging in age from 10 to 18 yr. The average zinc concentration decreased from 10 to 12 yr, but no clear relation to age was observed from 13 yr and older. These trends were similar to our previous report. The zinc concentration in hair and body weight gain over a year was negatively correlated. The age variation in the content of zinc, copper, manganese, and iron in hair was measured comparing hGHD with the normal subjects in various ages. Concerning the zinc-level variation of hGHD and normal subjects, there were conspicuous differences between hGHD and normal subjects. For copper, the variations in concentration with age were similar to zinc. Regarding the age variations for manganese, hGHD had lower concentrations in hair compared to the normal subjects throughout adolescence (11–18 yr). We have studied the effects between the hair and these trace element concentrations in hGHD before and after hGH administration. These results suggest that hGH affects the metabolism of these trace elements.  相似文献   

19.
Human scalp hair and some kinds of vegetable and animal fibers were analyzed by means of the SR excited X-ray fluorescence method (SRXFA) and the neutron activation method (NAA). Human hair samples collected from five males and five females were washed by the IAEA method prior to analysis. In the SRXFA analysis, samples were excited by monochromated X-rays. Fluorescence X-rays were measured by an Si(Li) detector. The elements detected in all hair samples were S, Ca, Cu, Fe, Zn, Br, and Sr. The elements K, Ti, Cr, Mn, Ni, Se, Hg, and Pb were also detected in several samples. After SRXFA analysis these same samples were analyzed by the NAA method. Elements such as Cu, Zn, and Br were detected by both methods, and their relative concentrations show a good agreement of variation between individuals. However, Pb was only detected by SRXFA, and Na, Au, and Sb were only detected by NAA. Therefore, these two methods are complementary to each other for trace element analysis.  相似文献   

20.
The hair of 132 healthy subjects between 6 and 40 yr old living in the Veneto region in Italy was analyzed by means of HPLC method in order to determine the presence of zinc, copper, nickel, manganese, and lead. The collected samples were subdivided on the basis of age (6–11 and 19–40 yr), and sex and color (black, red, brown, and blond). From the data some evident differences were emphasized. In female hair the content of metals was higher than in male hair independently of color. Blond hair gave the lowest concentration values of the elements studied independently of sex. The maximum amount of the metals was found generally in black hair, followed by red and brown hair. Age seems to have a different influence, with the copper element decreasing appreciably in brown and blond female hair as the age of the subjects increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号