首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary In order to improve the ultrastructural preservation of the female gametophyte ofPetunia x hybrida andBrassica napus we tested several cryofixation techniques and compared the results with those of conventional chemical fixation methods. Ovules fixed with glutaraldehyde and osmium tetroxide in the presence or absence of potassium ferrocyanide showed poor cell morphological and ultrastructural preservation. In ovules cryo-fixed by plunging into liquid propane, the cell morphology was well preserved. However, at the ultrastructural level structure-distorting ice crystals were detected in all tissues. Due to the large size of the ovules, cryofixation by plunging in liquid propane is not adequate for ultrastructural studies. In contrast,P. x hybrida andB. napus ovules cryo-fixed by high pressure freezing showed improved cell morphological as well as ultrastructural preservation of the embryo sac and the surrounding integumentary tissues. The contrast of the cellular membranes after freeze substitution with 2% osmium tetroxide and 0.1% uranyl acetate in dry acetone was high. At the ultrastructural level, the most prominent improvements were: straight plasma membranes which were appressed to the cell walls; turgid appearing organelles with smooth surface contours; minimal extraction of cytoplasmic and extracellular substances. In contrast to the chemically fixed ovules, in high pressure frozen ovules numerous microtubules and multivesicular bodies could be distinguished.  相似文献   

2.
Summary Swelling of Golgi apparatus cisternae is reported to be a common response to the ionophore, monensin. However, the amount of swelling depends on fixation, thus raising the question of whether the swelling response is due to monensin or to the fixation protocol. To resolve this problem, maize root cap cells were treated with monensin and then fixed with glutaraldehyde and osmium tetroxide (applied sequentially), osmium tetroxide alone, or aqueous potassium permanganate, or were quick frozen in liquid propane and substituted in acetone-osmium tetroxide. The chemical fixatives (which take minutes to stabilize tissue elements) were judged by comparison with freeze substitution which requires only fractions of a second to stabilize tissue elements. The results verify that monensin causes cisternal swelling and that this swelling is best observed at the ultrastructural level by fixation in glutaraldehyde/osmium tetroxide or by freeze substitution.  相似文献   

3.
The improvements brought by high-pressure freezing/freeze substitution fixation methods to the ultrastructural preservation of echinoderm mineralized tissues are investigated in developing pedicellariae and teeth of the echinoid Paracentrotus lividus. Three freeze substitution (FS) protocols were tested: one in the presence of osmium tetroxide, one in the presence of uranyl acetate, and the last in the presence of gallic acid. FS in the presence of osmium tetroxide significantly improved cell ultrastructure preservation and should especially be used for ultrastructural studies involving vesicles and the Golgi apparatus. With all protocols, multivesicular bodies, suggested to contain Ca(2+), were evident for the first time in skeleton-forming cells. FS in the presence of gallic acid allowed us to confirm the structured and insoluble character of a part of the organic matrix of mineralization in the calcification sites of the tooth, an observation which modifies the current understanding of biomineralization control in echinoderms.  相似文献   

4.
The quality of freeze-fixation for electron microscopy is dependent upon the size of intracellular ice crystals. In the absence of cryoprotectants, ice crystal growth is thought to be related to the speed with which the specimen is cooled. The purpose of this study was to investigate the relationship between the cooling rate and ultrastructural preservation in commonly used freezing techniques. The techniques studied included immersion in stirred and unstirred forms of five quenching fluids: liquid nitrogen, isopentane, Freon 12, Freon 22, and propane. Also studied were freezing in a flowing stream of coolant using liquid nitrogen and liquid helium and freezing on a metal surface using cooper and mercury chilled to liquid nitrogen temperature. For each technique a cooling curve was obtained with a 0.360-mm thermocouple which was dropped into the quenching fluids or brought into contact with the metal surfaces. From oscilloscope tracings, the cooling rates were determined in degrees centigrade per second to −100 °C. To evaluate ultrastructural preservation 0.5-mm-thick slices of rat kidney were frozen by each of the techniques and dried in an all glass freeze-drier. The final evaluation was made from electron micrographs of the best morphological preservation yielded by each technique. The results indicate that the copper and mercury surfaces and propane gave the highest cooling rates and the best morphological preservation. The other techniques cooled at decreasing rates and correspondingly showed decreasing abilities to preserve ultrastructure. This work demonstrates that the preservation of cellular ultrastructure by freezing is dependent upon the cooling rate and that as the cooling rate is increased, ultrastructural preservation is enhanced.  相似文献   

5.
Preservation of Tracheal Mucus by Nonaqueous Fixative   总被引:3,自引:0,他引:3  
Two nonaqueous fixatives, composed of fluorocarbon solvents with dissolved osmium tetroxide, were used to determine the feasibility of preserving the mucous coat in bovine and rat trachea for light and electron microscopy. Aqueous fixatives, while providing excellent cytological preservation, wash away the mucous lining, precluding ultrastructural analysis. Inclusion of ruthenium red or alcian blue within aqueous fixative improved retention of mucus, but provided incomplete, patchy results. Fixation with nonaqueous fluorocarbon solvent and dissolved osmium tetroxide preserved a continuous mucous epiphase layer above a clear hypophase layer. Subcomponents of the mucus included an electron dense surface layer, interrupted patches of mucus above the surface layer and electron dense membrane-like material within the mucus. This method of fixation will preserve mucus for light, scanning and transmission electron microscopy, using either intratracheal or immersion methods of fixation. The latter would enable use of materials from large animal models, autopsy or an abattoir.  相似文献   

6.
目的 比较冰冻切片技术中几种防冰晶方法对切片保存效果的影响。方法 分别使用液氮骤冷组织、高渗透压脱水法、单纯OCT胶包埋等几种方法后行冰冻切片、HE染色后,分别于当天、1、3、6个月后比较其染色效果,选出最佳保存方法。结果 单纯OCT包埋法在1个月后染色明显变浅,冰晶数量最多,而在3、6个月后染色基本接近背底色,冰晶面积已占据近半个视野,组织结构破坏极其严重;高渗透压脱水法在1个月后染色深度及冰晶数量上无明显变化,但3、6个月后则明显变浅,冰晶数量明显增加;而低温骤冷法在染色后的几个月,染色深度及冰晶的数量均无明显的变化,结构基本维持染色当天的状态。结论 低温骤冷法是这三种防冰晶法中最利于保存切片的方法。  相似文献   

7.
Actinidia deliciosa endosperm-derived callus culture is stable over a long period of culture. This system was used to investigate the ultrastructure of extracellular matrix occurring in morphogenic tissue. Specimens were prepared by different biological techniques (chemical fixation, liquid nitrogen fixation, glycerol substitution, critical-point drying, lyophilization) and observed by scanning electron microscopy (SEM). Fresh and wet samples were analyzed with the use of environmental scanning electron microscopy (ESEM). Extracellular matrix was observed on the surface of cell clusters as a membranous layer or reticulated network, shrunken or wrinkled, depending on the procedure. Generally, shrunken membranous layers with a globular appearance and fibrils were noted after critical-point drying and liquid nitrogen fixation. Smoother surface layers without visible fibrils and showing porosity were typically seen by environmental scanning electron microscopy. Preservation with glycerol substitution caused wrinkled appearance of examined layer. Analysis of fresh samples yielded images closer to their natural state than did critical-point drying or fixation in liquid nitrogen, but it seems best to compare the results of different visualization methods. This is the first report of ESEM observations of plant extracellular matrix and comparison with SEM images from fixed material.  相似文献   

8.
A comparison between two fixation techniques for freeze-fracture was established. Stratum corneum (SC) samples from pig epidermis were fixed using high-pressure freezing (HPF) and using plunging in propane freezing; the latter after chemical fixation. Then, frozen samples were freeze-fractured, coated with platinum-carbon, and visualized using a high-resolution low-temperature scanning electron microscope and a transmission electron microscope. Our results indicate that the plane of freeze-fracture was different depending on the fixation and freezing methodology used. In the samples frozen by HPF without chemical fixation, the fracture plane laid mainly between the lipid lamellae. However, when chemical fixation and plunging in propane freezing was used, the fracture plane did not show preference to a specific way. Plunging in propane freezing of chemically fixed samples, on the other hand, provides a more homogeneous fracture behaviour. Thus, depending on the methodology used, we can favour a visualization of either lipid or protein domains of the SC. These results could be very useful in future ultrastructural studies in order to facilitate the microscopic visualization and interpretation of the complex images such as those of SC and even of other samples in which different domains coexist.  相似文献   

9.
Many methods have been proposed to extract and quantify algal pigments. Comparative studies have found that pigment extraction efficiency varies among solvent and mechanical disruption protocols due to differential cellular resistance, thereby, leading to potential misinterpretation of pigment data. When the type or resistance of algae are unknown, a method is required that efficiently extract pigments from all taxonomic groups. The objective of this study was to develop a simple and efficient one stage periphyton pigment extraction protocol by comparing the extractability of four solvents (acetone, methanol, methanol/acetone, and methanol/acetone/N,N‐dimethylformamide), the effects of grinding, and the effects of freeze‐drying. The best overall extraction was obtained using freeze‐dried samples extracted with methanol/acetone/DMF/water (MAD). Eighty‐six percent more chlorophyll was extracted when the sample was freeze‐dried relative to fresh/frozen samples extracted with 90% acetone. Freeze‐drying greatly improved the extraction of both polar and non‐polar (lipophilic/hydrophobic) pigments while MAD increased the extractability of polar pigments and improved peak resolution of all pigments. Chemotaxonomic assessment differed between samples that were fresh/frozen or freeze‐dried before extraction. The relative abundance of cyanobacteria was greater for freeze‐dried material compared with fresh/frozen due to the improved extractability of cyanobacterial pigments. Based on the results of this study, the traditional approach of 90% acetone as a solvent is not recommended for periphyton samples containing cyanobacteria or when the composition of the mat is unknown. The combination of freeze‐drying and MAD was sufficient for the extraction of pigments from a periphyton mat containing filamentous cyanobacteria, green algae, and diatoms.  相似文献   

10.
Since the 1940s transmission electron microscopy (TEM) has been providing biologists with ultra-high resolution images of biological materials. Yet, because of laborious and time-consuming protocols that also demand experience in preparation of artifact-free samples, TEM is not considered a user-friendly technique. Traditional sample preparation for TEM used chemical fixatives to preserve cellular structures. High-pressure freezing is the cryofixation of biological samples under high pressures to produce very fast cooling rates, thereby restricting ice formation, which is detrimental to the integrity of cellular ultrastructure. High-pressure freezing and freeze substitution are currently the methods of choice for producing the highest quality morphology in resin sections for TEM. These methods minimize the artifacts normally associated with conventional processing for TEM of thin sections. After cryofixation the frozen water in the sample is replaced with liquid organic solvent at low temperatures, a process called freeze substitution. Freeze substitution is typically carried out over several days in dedicated, costly equipment. A recent innovation allows the process to be completed in three hours, instead of the usual two days. This is typically followed by several more days of sample preparation that includes infiltration and embedding in epoxy resins before sectioning. Here we present a protocol combining high-pressure freezing and quick freeze substitution that enables plant sample fixation to be accomplished within hours. The protocol can readily be adapted for working with other tissues or organisms. Plant tissues are of special concern because of the presence of aerated spaces and water-filled vacuoles that impede ice-free freezing of water. In addition, the process of chemical fixation is especially long in plants due to cell walls impeding the penetration of the chemicals to deep within the tissues. Plant tissues are therefore particularly challenging, but this protocol is reliable and produces samples of the highest quality.  相似文献   

11.
H. Dahmen  J. A. Hobot 《Protoplasma》1986,131(1):92-102
Summary Cryosubstitution provides an improved ultrastructural preservation of the two plant pathogensVenturia inaequalis andErysiphe graminis when compared to conventional preparation methods. Further, freezing the infected whole leaf material on a copper block cooled with liquid helium gave better results than those observed with the propane plunging method. Novel observations concerning the fungal stroma and haustoria were made which showed ribosomes organized into groups that were evenly distributed throughout the cytoplasm of both fungi. Stretches of rough endoplasmic reticulum were present, and microtubules were seen, sometimes associated with mitochondria. A large number of darkly staining vacuoles were observed in both fungi. The polarity of organelles and microtubules along the longitudinal axis of the haustorial body ofE. gramnis and along the growing direction of subcuticular stroma and runner hypha ofV. inaequalis was evident. InE. graminis filasomes were observed, as were Golgi-like bodies. These new observations, together with the advantages of the cryosubstitution technique, can serve as a basis for further studies in understanding host-parasite interactions.  相似文献   

12.
Cryo-electron microscopy of vitreous sections (CEMOVIS) is currently considered the method of choice to explore cellular ultrastructure at high resolution as close as possible to their native state. Here, we apply a novel, easy-to-use and low-cost freeze fixation method for CEMOVIS, avoiding the use of high-pressure freezing apparatus. Cells are placed in capillary metal tubes, which are tightly closed and plunged directly into liquid ethane cooled by liquid nitrogen. In some parts of the tube, crystalline ice is formed, building up pressure sufficient for the liquid-glass transition of the remaining specimen. We verified the presence of vitreous ice in these preparations using CEMOVIS and electron diffraction. Furthermore, different tube materials being less poisonous than copper were established to minimize physiological alterations of the specimen. Bacteria, yeast and mammalian cells were tested for molecular resolution. The quality of results is equivalent to samples prepared by conventional high pressure freezing apparatus, thus establishing this novel method as fast, easy-to-use and low-cost freeze fixation alternative for cryo-EM.  相似文献   

13.
Summary Adequate ultrastructural preservation of cells of the green algaTrebouxia aggregata is achieved by immersion freeze fixation using liquid propane followed by freeze substitution and resin embedding at ambient temperature. Despite differential staining of membranes, using this method we have been able to study plasma membrane biogenesis during cellular division. Daughter protoplasts are separated by an ingrowing septum of plasma membrane that extends into the cell from a particular site at the peripheral plasma membrane marked by centrioles. Septum development involves tip growth followed by lateral growth. This growth seems to involve transfer of membrane from an adjacent partially coated reticulum to the septum plasma membrane. The reticulum which extends from nearby Golgi stacks to the area of septum growth is associated with an extensive array of microtubules. After daughter protoplasts are completely separated, each one becomes surrounded by a cell wall which is distinct from the persisting mother wall. The ultrastructural evidence suggests that cells ofT. aggregata are autospores rather than vegetative cells.Abbreviations C centriole - ER endoplasmic reticulum - G Golgi body - MTOC microtubule organizing center - Mt(s) microtubule(s) - N nucleus - P primary septum - PCR partially coated reticulum - PM plasma membrane - Py pyrenoid - S septum  相似文献   

14.
Methods and Principles of Fixation by Freeze-Substitution   总被引:4,自引:8,他引:4       下载免费PDF全文
Freeze-substitution is based on rapid freezing of tissues followed by solution ("substitution") of ice at temperatures well below O°C. A 1 to 3 mm. specimen was thrown into 3:1 propane-isopentane cooled by liquid nitrogen to -175°C. (with precautions). The frozen tissue was placed in substituting fluid at -70°C. for 1 week to dissolve ice slowly without distorting tissue structure. Excess substituting agent was washed out, and the specimen was embedded, sectioned, and stained conventionally. For best morphological and histochemical preservation, substituting fluids should in general contain both chemical fixing agent and solvent for ice, e.g., 1 per cent solutions of osmium tetroxide in acetone, mercuric chloride in ethanol, and picric acid in ethanol. Preservation of structure was poorer after substitution in solvent alone. Evidence was obtained that the chemical agent fixes tissue at low temperatures. The chemical mechanisms of fixation are probably similar to those operating at room temperature: new chemical cross-linkages, which contain the fixing agent, join tissue constituents together. This process is distinguished from denaturation by pure solvents. Freeze-substitution has many advantages, particularly the preservation of structure to the limit of resolution with the light microscope, and the accurate localization of many soluble and labile substances.  相似文献   

15.
The ultrastructure of liquid crystalline phases of DNA raises numerous problems because of the structure itself which is fluid and which nature depends on the relative amount of DNA, water and ions. Different cryofixation methods were tested and compared after freeze-fracture of the specimen. A good ultrastructural preservation of the samples can be achieved without addition of any cryoprotectant by quick-freezing against a copper block cooled down to liquid helium temperature. Then, molecular orientations can be followed very accurately and the local disorder around a mean direction which exists in the liquid state is kept in the frozen structure.  相似文献   

16.
H L Skaer  F Franks  P Echlin 《Cryobiology》1978,15(5):589-602
Existing freezing methods for biological tissues, either for the purposes of storing living material or for ultrastructural observation, are hampered by various limitations, such as small samples (spray-freezing) or the introduction of physiological and/or cytological alterations (incubation in DMSO or glycerol, high pressure freezing). We have investigated the possibility of using aqueous polymer solutions as extracellular cryofixative media, the basis of structural preservation being the capacity of relatively dilute solutions to vitrify under quench cooling conditions. Evidence is presented to show that two such polymers (polyvinylpyrrolidone and hydroxyethyl starch) control—or even inhibit—intracellular freezing in a wide variety of quench cooled tissue samples. The effects of these polymers on the physiology of tissues from a range of different organisms has been assessed by microscopy, electrophysiology and secretion studies. At the concentrations necessary to ensure vitrification the polymer solutions cause only slight perturbations of the normal functioning of the cells studied. The special application of these studies to freeze fracture and scanning electron microscopy is discussed.  相似文献   

17.
While various fixation techniques for observing ice within tissues stored at high sub-zero temperatures currently exist, these techniques require either different fixative solution compositions when assessing different storage temperatures or alteration of the sample temperature to enable alcohol-water substitution. Therefore, high-subzero cryofixation (HSC), was developed to facilitate fixation at any temperature above −80 °C without sample temperature alteration. Rat liver sections (1 cm2) were frozen at a rate of −1 °C/min to −20 °C, stored for 1 h at −20 °C, and processed using classical freeze-substitution (FS) or HSC. FS samples were plunged in liquid nitrogen and held for 1 h before transfer to −80 °C methanol. After 1, 3, or 5 days of −80 °C storage, samples were placed in 3% glutaraldehyde on dry ice and allowed to sublimate. HSC samples were stored in HSC fixative at −20 °C for 1, 3, or 5 days prior to transfer to 4 °C. Tissue sections were paraffin embedded, sliced, and stained prior to quantification of ice size. HSC fixative permeation was linear with time and could be mathematically modelled to determine duration of fixation required for a given tissue depth. Ice grain size within the inner regions of 5 d samples was consistent between HSC and FS processing (p = 0.76); however, FS processing resulted in greater ice grains in the outer region of tissue. This differed significantly from HSC outer regions (p = 0.016) and FS inner regions (p = 0.038). No difference in ice size was observed between HSC inner and outer regions (p = 0.42). This work demonstrates that HSC can be utilized to observe ice formed within liver tissue stored at −20 °C. Unlike isothermal freeze fixation and freeze substitution alternatives, the low melting point of the HSC fixative enables its use at a variety of temperatures without alteration of sample temperature or fixative composition.  相似文献   

18.
Five chemical fixatives were evaluated for their ability to accurately preserve bacterial ultrastructure during freeze-substitution of select Escherichia coli and Bacillus subtilis strains. Radioisotopes were specifically incorporated into the peptidoglycan, lipopolysaccharide, and nucleic acids of E. coli SFK11 and W7 and into the peptidoglycan and RNA of B. subtilis 168 and W23. The ease of extraction of radiolabels, as assessed by liquid scintillation counting during all stages of processing for freeze-substitution, was used as an indicator of cell structural integrity and retention of cellular chemical composition. Subsequent visual examination by electron microscopy was used to confirm ultrastructural conformation. The fixatives used were: 2% (wt/vol) osmium tetroxide and 2% (wt/vol) uranyl acetate; 2% (vol/vol) glutaraldehyde and 2% (wt/vol) uranyl acetate; 2% (vol/vol) acrolein and 2% (wt/vol) uranyl acetate; 2% (wt/vol) gallic acid; and 2% (wt/vol) uranyl acetate. All fixatives were prepared in a substitution solvent of anhydrous acetone. Extraction of cellular constituents depended on the chemical fixative used. A combination of 2% osmium tetroxide-2% uranyl acetate or 2% gallic acid alone resulted in optimum fixation as ascertained by least extraction of radiolabels. In both gram-positive and gram-negative organisms, high levels of radiolabel were detected in the processing fluids in which 2% acrolein-2% uranyl acetate, 2% glutaraldehyde-2% uranyl acetate, or 2% uranyl acetate alone were used as fixatives. Ultrastructural variations were observed in cells freeze-substituted in the presence of different chemical fixatives. We recommend the use of osmium tetroxide and uranyl acetate in acetone for routine freeze-substitution of eubacteria, while gallic acid is recommended for use when microanalytical processing necessitates the omission of osmium.  相似文献   

19.
Freeze-substitution and more conventional embedding protocols were evaluated for their accurate preservation of eubacterial ultrastructure. Radioisotopes were specifically incorporated into the RNA, DNA, peptidoglycan, and lipopolysaccharide of two isogenic derivatives of Escherichia coli K-12 as representative gram-negative eubacteria and into the RNA and peptidoglycan of Bacillus subtilis strains 168 and W23 as representative gram-positive eubacteria. Radiolabeled bacteria were processed for electron microscopy by conventional methods with glutaraldehyde fixation, osmium tetroxide postfixation, dehydration in either a graded acetone or ethanol series, and infiltration in either Spurr or Epon 812 resin. A second set of cells were simultaneously freeze-substituted by plunge-freezing in liquid propane, substituting in anhydrous acetone containing 2% (wt/vol) osmium tetroxide, and 2% (wt/vol) uranyl acetate, and infiltrating in Epon 812. Extraction of radiolabeled cell components was monitored by liquid scintillation counting at all stages of processing to indicate retention of cell labels. Electron microscopy was also used to visually confirm ultrastructural integrity. Radiolabeled nucleic acid and wall components were extracted by both methods. In conventionally embedded specimens, dehydration was particularly damaging, with ethanol-dehydrated cells losing significantly more radiolabeled material during dehydration and subsequent infiltration than acetone-treated cells. For freeze-substituted specimens, postsubstitution washes in acetone were the most deleterious step for gram-negative cells, while infiltration was more damaging for gram-positive cells. Autoradiographs of specimens collected during freeze-substitution were scanned with an optical densitometer to provide an indication of freezing damage; the majority of label lost from freeze-substituted cells was a result of poor freezing to approximately one-half of the cell population, thus accounting for the relatively high levels of radiolabel detected in the processing fluids. These experiments revealed that gram-positive and gram-negative cells respond differently to freezing; these differences are discussed with reference to wall structure. It was apparent that the cells frozen first (ie., the first to contact the cryogen) retained the highest percentage of all radioisotopes, and the highest level of cellular infrastructure, indicative of better preservation. The preservation of these select cells was far superior to that obtained by more conventional techniques.  相似文献   

20.
Second-stage juveniles of Meloidogyne incognita were prepared by several different techniques for scanning electron microscopy (SEM). Sequential fixation in the cold (4-8 C) was superior to rapid fixation at room temperature, glutaraldehyde and glutaraldehyde-formalin were better fixatives than formalin alone, and critical point drying with carbon dioxide or Freon gave similar results that were only slightly better than air drying with Freon. Freeze drying sequentially fixed nematodes from 100% ethanol in liquid propane produced the best preserved specimens with the fewest artifacts. Specimens of various free-living and plant-parasitic nematodes were prepared for SEM by freeze drying. This technique was adequate for most genera but unsatisfactory for a few. Although each genus may require a different procedure for optimum preservation of detail, sequential fixation with glutaraldehyde and freeze drying are comparable and often superior to commonly used techniques for preparing nematodes for SEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号